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Figure 1. Visualizing shape chains from ShapeWalk. Our dataset consists of 158K unique shapes connected through 26K
edit chains, with an average length of 14 chained shapes. We illustrate the interpolation process by coloring shapes based on
their proximity to the starting shape (blue), and the ending shape (orange). Each consecutive pair of shapes is associated with
precise language instructions describing the applied edits. For each shape transition, we also provide a precise edit vector ✓ij
describing the parameter changes necessary to transition from one shape to the next.

Abstract

Editing 3D shapes through natural language instructions

is a challenging task that requires the comprehension of

both language semantics and fine-grained geometric de-

tails. To bridge this gap, we introduce ShapeWalk, a care-

fully designed synthetic dataset designed to advance the

field of language-guided shape editing. The dataset consists

of 158K unique shapes connected through 26K edit chains,

with an average length of 14 chained shapes. Each con-

secutive pair of shapes is associated with precise language

instructions describing the applied edits. We synthesize edit

chains by reconstructing and interpolating shapes sampled

from a realistic CAD-designed 3D dataset in the parameter

space of the GeoCode shape program. We leverage rule-

based methods and language models to generate accurate

and realistic natural language prompts corresponding to

each edit. To illustrate the practicality of our contribution,

we train neural editor modules in the latent space of shape

autoencoders, and demonstrate the ability of our dataset to

enable a variety of language-guided shape edits. Finally,

we introduce multi-step editing metrics to benchmark the

capacity of our models to perform recursive shape edits.

We hope that our work will enable further study of composi-

tional language-guided shape editing, and finds application

in 3D CAD design and interactive modeling.



Figure 2. Comparing ShapeTalk with our work. We compare
the ShapeTalk [3] dataset (top) with our work (bottom). For an
equivalent edit instruction (in green), ShapeTalk provides pairs of
shapes with many factors of variation, while we generate synthetic
pairs of shapes with a single clear varying factor.

1. Introduction

Whether in the realms of computer-aided design, virtual re-
ality environments, or digital content creation, the process
of refining and enhancing 3D visual data often involves in-
tricate adjustments to geometric shapes, textures, and light-
ing. Furthermore, the necessity for precise modifications
adds an additional layer of complexity, as inaccuracies can
have profound implications on the final output. This labor-
intensive nature of 3D data editing not only hinders work-
flow efficiency but also poses a barrier for individuals with-
out specialized skills, limiting the democratization of 3D
content manipulation. As such, there exists a compelling
need for innovative solutions that streamline and democra-
tize the 3D editing process, making it more accessible to a
broader range of users. But how to train models with the
ability to perform these complex edits?
To that end, we introduce ShapeWalk, a dataset aiming at
addressing the challenges inherent in the intricate and skill-
intensive nature of 3D data editing. Our dataset consists
of synthesized chains of 3D shapes, connected through edit
vectors associated with precise language instructions de-
scribing the applied edits. It contains 158K unique shapes
connected through 26K edit chains, with an average length
of 14 chained shapes. Our generation method is scalable
and can yield an indefinite number of realistic shape chains,
and extended to any 3D domain and shape program. To our
knowledge, our dataset is the first to provide a large-scale
collection of realistic 3D shape edit chains with precise
language instructions, and matching ground-truth edited
shapes. Our method yields specific edits undiluted by other
factors of variation, as illustrated in Figure 2.

To validate the usefulness of our dataset, we train neural
editor modules in the latent space of shape autoencoders [1],
and demonstrate the ability of our dataset to train models
capable of performing a variety of shape edits. We learn

latent mappings in the space of a frozen shape autoencoder,
and show that our method can be applied on shapes unseen
during the training of the neural editor. Taking advantage of
the ground-truth shape chains provided by our dataset, we
introduce multi-step editing metrics inspired from the field
of trajectory prediction [4, 26] to evaluate the quality of our
models.
Our contributions can be summarized as follows:

• Chained Shape-Editing Dataset: We introduce a syn-
thetic dataset of chained edits, with associated language
instructions and ground-truth edited shapes. This is the
first dataset of its kind, and is designed to facilitate the
study of compositional shape editing.

• Neural Shape Editor: We introduce a neural editor mod-
ule trained on our dataset, and demonstrate its ability
to perform a variety of shape edits. We show that our
method can be applied on shapes unseen during the train-
ing of the neural editor.

• Chained-Editing Metrics: With the introduction of
ground-truth shape chains, we propose multi-step editing
metrics to evaluate the ability of neural editors to perform
recursively applied edits.

2. Related work

3D Shape Programs. A significant body of work [9, 11,
12, 14, 19] is dedicated to exploring the use of procedu-
ral programs for 3D shape representation. Representing 3D
objects as visual programs has many advantages. Repre-
senting shapes as visual primitives enhances interpretabil-
ity [11, 14], as programs are by definition human-readable
and thus understandable by human experts. Shape programs
are more compact [9, 27] than their usual 3D shape modal-
ities, and can be used to represent shapes more efficiently.
Programs can also be composed to create shapes [11, 14],
or decomposed into smaller programs. Ideally, shape pro-
grams can be edited [13] to modify the underlying geometry
they represent.

Our dataset consists of a collection of synthetic shapes
created utilizing a backbone mesh-generating shape pro-
gram. Specifically, we build from GeoCode [17], a 3D
shape synthesis technique addressing the challenge of
mapping high-fidelity geometry to an editable parameter
space. GeoCode introduces a procedural program enabling
the generation of high-quality mesh outputs with a balanced
blend of interpretability and fine control.

Language-Guided 3D Shape Editing. Various works
have explored the use of natural language instructions
to guide 3D shape editing. Recent efforts [16, 20, 21]
propose to leverage pre-trained CLIP [24] models to align



3D shapes with a given text prompt. Early efforts in that
direction [16] included optimizing meshes to progressively
align them with CLIP embeddings, leading to important
computational overhead. CLIP-Sculptor [21], a more
recent work, leverages a voxelized representation and a
discrete latent space conditioned on CLIP’s image-text
embeddings to perform fast and fidel shape edits without
shape optimization.

Shape Editing Datasets. Other works leverage large text-
aligned 3D shape datasets and require significant manual
annotation effort. ShapeCrafter [8] generates 3D shapes
incrementally from text using a neural network, evolving
with additional phrases. ShapeCrafter is designed for re-
cursive shape edition and utilizes a VQ-VAE [23] model
to represent shapes as discrete codes. This method ex-
hibits consistent shape-text alignment with gradual evolu-
tion. ChangeIt3D [3] introduces ShapeTalk, a large dataset
for describing 3D shape differences. The framework fa-
cilitates language-based editing of 3D models without re-
quiring 2D to 3D conversion methods, and learns a shape
editing model by learning contrasts between sampled shape
pairs.

ShapeTalk [3] is the most similar work to our proposed
dataset, and is the only publicly available dataset specifi-
cally designed for language-guided 3D shape-to-shape edit-
ing. ShapeTalk is a remarkable contribution in the field of
language-guided shape editing, and is one of the first works
to leverage large-scale 3D shape datasets to facilitate the
study of language-guided shape editing. However, this work
has some limitations that we attempt to address in our work.
Collecting a dataset of shape differences is a challenging
task requiring considerable manual annotation effort, and
gathering a large number of 3D shapes may not be feasible
for all domains. Furthermore, ShapeTalk is composed of
edit contexts (i.e. shape pairs and edit instructions) which
are hard to separate into fine-grained, composable edits.
Most of the time, singular shape edits do not have have an
exact ground-truth in the form of a source and target shape
pair. We illustrate this important distinction in Figure 2.
The availability of singular shape edits with an associated
ground-truth would ease benchmarking the quality of shape
editing methods, and facilitate the training process of edit-
ing models. ShapeTalk also does not provide a mechanism
to generate edit chains, which are necessary to study com-
positional shape editing. Finally, ShapeTalk does not easily
enable the study of shape editing in a compositional man-
ner. In contrast, our dataset is 1) synthesized by augmenting
a small set of diverse shapes and can easily be scaled up,
2) composed of fine-grained edits and coarse-grained edits
with exact ground-truths, and 3) separated into edit chains,
which are designed to facilitate the study of compositional
shape editing.

3. ShapeWalk

Our dataset contains 158K shapes split into a random and
realistic set. With each edge connecting two consecutive
shapes, we also produce a text instruction generated us-
ing the parameter changes necessary to transition from one
shape to the next. We detail the generation method of our
dataset here, and summarize the process in Figure 3.

3.1. Dataset

Definition. Our dataset can be defined as a collection
of directed graph paths (dipaths), denoted as P(k) =
(S(k), E(k), f (k)). For each shape chain P(k) of length l,
we denote:

• S(k) = {s(k)✓1
, . . . , s(k)✓N

}, the set of distinct shape nodes
composing the chain. Each shape is defined by a set of
parameters ✓i ✓ ⇥, where ⇥ is the linear parameter space
of our shape program.

• E(k) ✓ {(s(k)✓i
, s(k)✓j

) | s(k)✓i
, s(k)✓j

2 V (k), j = i + 1}, the
set of edges linking each consecutive pair of shapes.

• f (k) : E(k) 7! {(✓ij , pij) | ✓ij ✓ ⇥, pij 2 ⌃}, a
function mapping each edge to a vector ✓ij ✓ ⇥ and
a set of text instructions pij. ✓ij defines the parameter
changes, or edits necessary, to go from shape i to j. pij

is a set of text instructions describing this edit in natural
language.

Generation. To generate our dataset, we start by recon-
structing a set S ✓ S of realistic 3D CAD shapes into the
space of shapes covered by our shape program S⇥ ⇢ S . To
that end, we utilize shapes from the 3DCOMPAT++ [15, 22]
dataset, a realistic, industry-based 3D CAD dataset. We em-
ploy this dataset to avoid overlap with ShapeNet [5], and to
ensure diversity and visual quality of the shapes.
We define a visual similarity function d : S ⇥ S 7!
R between two shapes si, sj 2 S as the feature-wise
mean squared error between the original and reconstructed
meshes’ renderings, in the space of a pre-trained ResNet-
50 [10] encoder �R : Rh⇥w⇥3 7! Rd.

d(si, sj) = k�R(fR(si))� �R(fR(sj))k2

Where fR : S 7! R3⇥h⇥w is a rendering function. The set
of reconstructed shapes can then be defined as:

argmin
SR✓S

|SR|=(1�↵)|S|

X

s2SR

d(s, bs)

Where bs is the reconstructed shape, defined as:

bs = f⇥ � �⇥(s)



Figure 3. Detailling the shape generation pipeline of ShapeWalk. Realistic 3D CAD shapes are reconstructed from the
3DCOMPAT++ [22] dataset into the GeoCode [17] shape program parameter space, using a mapping function �⇥. Reconstructed shapes
with an error over a fixed threshold are discarded using a visual similarity function d, which is based on rendered feature similarity. Filtered
pairs of shapes are then interpolated in the parameter space of the shape program, to generate shape chains P(k).

With f⇥ : ⇥ 7! S the shape program mapping shape pa-
rameters to a 3D mesh, and �⇥ : S 7! ⇥ an encoder based
on DGCNN [17, 25] which samples points from a shape
surface and regresses corresponding shape parameters in ⇥.

We reconstruct shapes by first sampling pointclouds
from the surface of the original meshes, and then feeding
them into the DGCNN [25] encoder fine-tuned [17] to
regress the parameters of the shape program. We discard
a ratio of ↵ = 0.08 of the shapes with the highest re-
construction error, which we measure as the feature-wise
mean squared error between the original and reconstructed
meshes’ renderings, in the space of a pre-trained ResNet-
50 [10] encoder. This threshold is selected empirically
by visually inspecting the shapes in the upper part of the
reconstruction error distribution. In our dataset instance
building on 3DCOMPAT++ shapes, we filter out a total
of 89 shapes during this process, leading to a set of
|SR| = 1113 reconstructed shapes. This process can be
scaled up to any dataset size and any shape domain, as long
as a corresponding shape program is available.

Shape interpolation. After reconstructing a set SR of re-
alistic shapes, we generate a set of shape chains P(k) by
interpolating between the parameters of shape pairs.
To that end, we first sample a set of shape pairs
(s✓i , s✓j) 2 SP ✓ SR ⇥ SR, and partition them into
L = 10 levels of proximity. These proximity levels are
based on the feature-wise mean squared error between the
original and reconstructed meshes’ renderings, in the space
of a pre-trained ResNet-50 [10] encoder.

We define the set of shape pairs S(l)
P at level l 2 J1, LK as:

S(l)
P = {(s✓i , s✓j) 2 SP | d(s✓i , s✓j) 2


l � 1

L
,
l

L

�
}

Where d is a visual similarity function, min-max normal-
ized across all pairs of shapes.

For each pair (s✓i , s✓j) 2 S(l)
P , we then interpolate between

the shape parameters ✓i and ✓j to generate a set of interme-
diate shape parameters (✓i, . . . , ✓i+(N�2), ✓j) 2 ⇥N . The
number of intermediate shapes N is defined as the number
of differing parameters between ✓i and ✓j, that is:

N = |{k | ✓i[k] 6= ✓j[k]}|

When the proximity level is low, edits necessary to transi-
tion from one shape to another are larger in intensity as the
shapes are more different, and smaller when l is smaller.
The ordering of intermediate edits is randomly sampled us-
ing a dependency-aware algorithm (for example, parame-
ters relating to armrest height or width are sampled after the
addition of armrests).
As illustrated in Figure 1, this generation process leads
to plausible interpolated shapes, and to fine-grained and
realistic sequences of edits with detailed metadata.
We summarize the process of generating realistic shape
chains in Figure 3.

Random set. While the realistic set is based on recon-
structed shapes from the 3DCOMPAT++ [15, 22] dataset,
the random set is based on a collection of random shapes
generated using the shape program. This alternative set
aims at covering a large space of the parameter space of
the GeoCode shape program. This subset is generated by
systematically sampling various combinations of parame-
ters within defined ranges determined by a minimum edit
intensity, but does not necessarily result in realistic shapes.

3.2. Text Instructions

Rule-based generation. Given an edit vector ✓ij de-
scribing the parameter changes necessary to transition
from shape i to j, we generate a set of text instructions
pij describing this edit in natural language. We first
map each parameter ✓i[k] composing the edit vector to
a natural language name, and map the magnitude of the



Figure 4. Dataset chains samples. We feature in this figure shape chains from our dataset with associated generated text instructions. Each
shape chain is composed of a sequence of shapes, with each consecutive pair of shapes associated to a set of text instructions describing the
edits necessary to transition from one shape to the next. Overall, generated text instructions are accurate and provide a detailed description
of the edits applied to the shapes. We include in the supplementary material additional samples of generated shape chains, alongside shape
chains generated for two additional table and vase categories.

parameter change to a natural language intensity depending
on the parameter type. Boolean parameters are also
described appropriately, for example by using the word add

or remove when describing the addition or removal of a part.

Augmentation. This rule-based instruction generation
leads to perfectly accurate instructions, but may lack diver-
sity. To alleviate this issue, we 1) randomly sample adjec-
tives and adverbs to characterize the intensity of edits, 2)

randomly invert parameter names and magnitude directions
(e.g. ”increase armrests straightness” will be augmented
to ”decrease armrests bend” for the same edit). As a final
augmentation, we utilize a T5 [18] transformer model fine-
tuned for paraphrasing to generate additional instructions
for each edit vector. We use the Parrot library [6] to fil-
ter generated paraphrases based on a fluency and adequacy
score.

We summarize the process of generating text instructions in
the supplementary material.

4. Neural Shape Editing

4.1. Problem

We are concerned with the task of editing a shape si given
a sequence of natural language edit instructions. We want
to learn an editing function fE : S ⇥ ⌃ 7! S , where S
is the space of input shapes, and ⌃ is the space of natu-
ral language edit instructions, able to compose edits from a
starting shape s1 to an ending shape sN , given a sequence
of edit instrutions {pt}Nt=1.

csN = fE(�T (p12), fE(�T (p23), . . . fE(�T (pkN), s1)))

Where N = |P| is the length of the edit chain, and �T :
⌃ 7! RDT is a text encoder. At the end of the edit se-
quence, we want to recover a shape csN as close as possible
to the ground-truth shape sN . Our proposed dataset pro-
vides a ground-truth for every intermediate shape sk, which
we leverage to train and evaluate our method.



Figure 5. Visualizing synthesized pairs of edits using our latent editors. We illustrate the diverse range of edits generated by our
proposed latent mapper, showcasing its ability to capture nuanced variations in the input data, for 3DS2VS latents (top two rows) and
PC-AE latents (bottom two rows). Each pair demonstrates the original input on the left and the corresponding synthesized output on the
right, with the associated caption. We abbreviate instructions which are too long to fit in the figure, and indicate when text is omitted with
an ellipsis. For more subtle changes, we circle the areas of interest in both source and target shapes. Overall, edits are consistent with the
input instruction, preserve shape identity while generating plausible output shapes.

4.2. Objective

One of the main advantages of training a shape editing
model with ShapeWalk compared to other works [2, 8] is
the availability of exact ground-truth edited shapes for each
edit instruction (see Section 2). We thus formulate the ob-
jective function of our learning problem as a simple L2 loss
between the latents of the synthesized shape and the ground-
truth shape. For all pairs of shapes (si, sj) and their corre-
sponding edit instructions pij, we minimize the following
loss:

L = kfE(�E(si), pij)� �E(sj)k2

Where �AE = �E � �D is a shape autoencoder, and �E :
S 7! RDE denotes its encoder component.

4.3. Models

For �AE , we experiment with PC-AE [1] and 3D2VS [28]
models both pre-trained on ShapeNet [5]. Note that our
method is agnostic to the choice of shape autoencoder and
can be adapted to a variety of shape representations. For
�T , we use a pretrained BERT [7] model.

Both �AE and �T are frozen during training, and we
only train the parameters of our latent mapper fE .



For PC-AE, we formulate our latent mapper as a neural
module which for each tuple (�E(si), pij, �E(sj)) pre-
dicts an edit vector c✓ij 2 RDE in the feature space of �E ,
and adds it to the latent of the input shape si to generate the
latent of the output shape sj :

fE(�E(si), pij) = c✓ij + �E(si)

We utilize two variants of our latent mapper fE : one in
which the edit vector c✓ij is predicted directly, and one in
which the edit vector c✓ij is predicted as a product of a nor-
malized edit direction cvij 2 RDE and a magnitude dmij 2 R
separately.

For 3D2VS which encodes shapes as latents sets of
higher resolutions, we use a transformer-based latent diffu-
sion model instead to generate edited latents. We concate-
nate the input shape latent �E(si) with the noised edited
shape latent �E(sj + ✏t) and feed the BERT text embed-
dings to the cross-attention layers of the transformer blocks
to predict the added noise. We illustrate our architecture for
the latent mapper in the supplementary material.

5. Experiments

5.1. Chained Shape Editing

Comparison Models. For PC-AE, we experiment with
three variants of our latent mapper module:

• DIRECTGEN directly predicts the edited shape latent
without regressing an edit vector.

• LATEFUSION follows the network proposed in [3], and
first passes the shape embeddings through an encoder.
Encoded shape features are then concatenated with text
embeddings and fed into a neural module which finally
predicts the edit vector.

• OURS is a simple multi-layer perceptron (MLP) which
directly takes the context (shape and text embeddings) as
input to predict an edit vector.

For all of these variants, we experiment with various bottle-
neck dimensions and number of layers (in subscript).
We further decompose these variants into coupled and de-

coupled versions, where we predict a normalized edit direc-
tion cvij 2 RDE and a magnitude dmij 2 R separately. We
provide in appendix the full architecture details and training
hyperparameters employed to train our models.

Note that we do not compare with ChangeIt3D [2] as
their neural-listener distillation method is not applicable
in our context: we train our models with a direct feedback
signal from the ground-truth edited shapes.

Single-step metrics. We propose to measure the quality
of our editing steps both before and after shape reconstruc-
tion. Since we experiment on pointclouds, we use the scaled
Chamfer Distance between the reconstructed original shape
si and the reconstructed edited shape bsj :

dCD =
1

| bsj |
X

x2 bsj

min
y2si

kx� yk2 +
1

|si|
X

y2si

min
x2 bsj

kx� yk2

We also use the L2 distance between the latents of the orig-
inal shape si and the edited shape sj :

dL2 = k�E(si)� �E(sj)k2

Multi-step metrics. To extend the single-step metrics to
chained shape generation, we take inspiration from the tra-
jectory prediction literature [4, 26] and propose appropriate
metrics for our task.

Given a shape distance function d : S ⇥ S 7! R, a chain
of ground-truth reconstructed shapes {s1, . . . , sN}, and a
set of recursively generated shapes { bs1, . . . , csN}, we de-
fine the average edit error as the average distance between
the generated shapes and the corresponding ground-truth
shapes:

Ad =
1

N

NX

t=1

d(st, bst)

And the final edit error as the distance between the last
shape in the chain and the corresponding ground-truth
shape:

Fd = d(sN , csN )

We report results with both metrics for d = dCD and
d = dL2 .

Results. We provide qualitative results of edited pairs gen-
erated by our latent mapper in Figure 5. Overall, we observe
that our method is able to generate plausible edits that are
consistent with the input instruction, and preserve the iden-
tity of the input shape. However, our method is limited by
the quality of the shape autoencoder. We notice that the PC-
AE editor is unable to perform very fine-grained edits which
are not properly captured by the autoencoder, while visible
in the ground-truth shapes. We explore the possible causes
of these limitations in Section 5.2.
We provide quantitative results for our chained editing met-
rics averaged across |P| 2 {10, 15, 20} in Table 1, and de-
tail per-chain length results in the appendix. Directly pre-
dicting the edited shape latent (DIRECTGEN) leads to poor
edit predictions across all metrics, although increasing the
number of layers may improve the results. Overall, decou-
pling the edit direction and magnitude leads to better results.
Our coupled OURS512⇥4 variant performs better than the
coupled LATEFUSION512 variant on the Chamfer Distance,
but worse on L2 distance.



Model decoupled?
Averaged 8|P|

FCD⇥1e4 ACD⇥1e4 FL2 AL2

LATEFUSION1024 � 2.856 2.621 1.444 1.251

LATEFUSION512 � 2.719 2.609 1.462 1.290

LATEFUSION256 � 2.874 2.651 1.509 1.283

OURS512⇥8 � 3.208 2.822 1.703 1.437

OURS512⇥4 � 2.990 2.703 1.589 1.351

LATEFUSION1024 � 2.711 2.568 1.405 1.245

LATEFUSION512 � 3.002 2.708 1.451 1.254

LATEFUSION256 � 3.309 2.848 1.552 1.324

OURS512⇥8 � 2.782 2.584 1.497 1.290

OURS512⇥4 � 2.670 2.524 1.447 1.266

Table 1. Chained shape editing ablation. We report baseline re-
sults for our proposed chained shape editing task, averaged across
all chain lengths |P| 2 {10, 15, 20}. Both the average final and
average edit error are reported for the Chamfer Distance (CD) and
L2 distance (L2) metrics.

Parameter Accuracy

seat height 1.000
backrest curvature 1.000
object width/height/depth 0.978
seat roundness 0.978
top bar thickness/height 0.961
legs thickness 0.956
legs bending/curvature 0.944
adding/removing handle cushions 0.750
number of legs/backrest rails 0.663
legs roundness/indentation 0.587

AVG (RANDOM) 0.884

AVG (REALISTIC) 0.969

Table 2. Parameter-wise accuracy for shape edit recognition.

We report the accuracy of our edit detector for each parameter in
the random set, alongside the average accuracy for the full random

and realistic sets. Overall, we observe that our classifier is able to
recognize edits corresponding to high change edits, but fails to
differentiate between subtle changes.

5.2. Recognizing Shape Edits

Problem. To provide additional insight into the quality of
our latent mapper and the difficulty of predicting specific
edits, we train a binary classifier to discriminate from a
pair of shapes (si, sj) on whether the corresponding edit
instruction pij was applied to si or sj . We train a binary
classifier fC : S ⇥ S 7! {0, 1}, where fC(si, sj) = 1 if the
edit instruction pij was applied to si, and 0 otherwise.

Method. Similarly to our latent mapper architecture for PC-
AE, we use an MLP-based shape latent encoder to encode

the input shape latents into the bottleneck dimension, and
project text features using a single linear layer to the same
dimension. We then concatenate the two feature vectors and
pass them through an MLP predictor outputting probabili-
ties for the two classes si and sj . We train our classifier
using a binary cross-entropy loss.
Training and evaluation. We train our classifier on the
realistic set and evaluate it on the full random shape set,
which has a restricted vocabulary of edit instructions. We
evaluate the accuracy of the classifier on the full set, as well
as on subsets of the data corresponding to specific types of
edits.
Results. In Table 2, we provide accuracy results for shape
edit recognition, depending on the edit type. We also pro-
vide the global accuracy on the random and realistic sets.
We observe that our classifier is able to recognize edits cor-
responding to shape parameters associated with a high de-
gree of shape variation (like seat height and width/height of
the shape), but struggles with parameters which are more
subtle (like legs roundness, handle cushions). Our classifier
is able to detect edits related to global width/height/depth
adjustments with an accuracy of 97.8%. This accuracy
drops to 94.4% for legs bending/curvature, which is a more
subtle change in the shape, and to 58.7% for legs round-
ness/indentation. We also note that the model does not per-
form well on edits related to the number of parts, i.e. adding
or removing a number k of legs or backrest rails.

We impute these discrepancies to several factors. The
PC-AE shape autoencoder we employ may be unable to
properly reconstruct fine-grained details in the ground-truth
and edited shapes, which renders the task of detecting subtle
changes more difficult. Pointcloud resolution is also a lim-
itation, as fine-grained parameters like leg indentation may
not be properly sampled. Finally, learning a latent mapper
and a classifier that can accurately count the number of parts
to add or remove may also be a difficult task of its own, and
require more domain-specific inductive biases.

6. Conclusion

In conclusion, this paper introduces the ShapeWalk dataset,
designed for advancing compositional shape editing guided
by natural language instructions. The dataset comprises
158K unique shapes connected through 26K edit chains,
synthesized from a realistic CAD-designed 3D dataset.
Language instructions for applied edits are provided, along-
side exact ground-truth edited shapes. Our method requires
zero human annotation effort, and can be scaled up indef-
initely. The usefulness of the dataset is demonstrated by
training neural editor modules in the latent space of shape
autoencoders [1]. Evaluation metrics inspired by trajec-
tory prediction literature [4, 26] are introduced, offering a
quantitative assessment of the quality of recursively edited
shapes.
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Supplementary Material

Code and Dataset

Our dataset, generation code, model checkpoints and train-
ing scripts will be made available upon publication at:

https://shapewalk.github.io/

Appendix Overview

This supplementary document is organized as follows:
• Section 1 provides additional analysis of our latent editor

models.
• Section 2 provides additional implementation details

about our dataset generation and model training pro-
cesses.

• Section 3 gives shape reconstruction examples.
• Section 4 showcases edit chain samples from our dataset,

including edit chains for additional table and vase

classes, and dataset statistics.
• Section 5 illustrates the sampling process for the 3D2VS

latent diffusion model.

1. Analysis

We differentiate in the additional results in this section be-
tween CD � REC and CD � REAL metrics, which respec-
tively measure the distance to the reconstructed edited shape
and the real edited shape. The latter metric is more relevant
for our task, as it measures the final editing ability of the
model (reported in the main paper).

1.1. Chained Shape Editing

We provide detailed results for the chained shape editing
task described in the main paper, in Table 2. We report
baseline results for our proposed chained shape editing task,
for chain lengths |P| 2 {10, 15, 20}. Overall, while no
clear trend is observed for the Chamfer Distance, we ob-
serve that the average edit error for L2 distance decreases
with longer chains. This could be explained by the fact that
longer chains contain more sequences of fine-grained edits
which are less likely to make the feature representations di-
verge abruptly. On the other hand, shorter chains are more
likely to contain sequences of high-magnitude edits, which
amplify the cumulative prediction error. In that sense, a par-
allel could be made with the long-horizon prediction prob-
lem in trajectory forecasting, where the prediction error ac-
cumulates over time [2].

1.2. Oracle Editing

We provide detailed results for the chained shape editing
task when oracle magnitudes and directions are used, in Ta-

ble 2. Overall, the biggest gain for PC-AE based models is
observed when using oracle directions. This suggests that
the main bottleneck for our models is the edit direction pre-
diction task, which is more challenging than predicting the
magnitude from the input prompt.

1.3. Predicting Edit Magnitudes

Our decoupled latent editor models predict both a normal-
ized edit direction v̂ij and an edit magnitude m̂ij for each
edit. We use this property to analyze the correlation be-
tween the predicted edit magnitudes and the ground truth
edit intensities extracted from our metadata. We extract
decoupled edit vector predictions from our models on the
random subset, and compare them to the ground truth edit
intensities. In order to do that, we min-max normalize the
predicted edit magnitudes and bin them in the [1, 9] interval.
Ground-truth edit intensities are extracted from the ground-
truth edit vectors, similarly by discretizing the magnitude
of changes in the same interval. We plot confusion matri-
ces comparing these predicted discretized edit magnitudes
to the ground truth edit intensities in Figure 1. We show
results for three decoupled baselines: LATEFUSION1024,
LATEFUSION512, and OURS512⇥4.

Overall, we observe a strong correlation between the pre-
dicted edit magnitudes and the ground truth edit intensities
across all models. However all models tend to deviate from
the ideal diagonal magnitude predictions. We remark also
that the OURS512⇥4 model tends to deviate from the diago-
nal and avoids predicting the maximum possible magnitude
range. One way to alleviate these biases could be to intro-
duce explicit supervision to the edit magnitude prediction
task using the ground truth edit magnitude labels. For ex-
ample, a contrastive loss could incentivize the model to pre-
dict edit magnitudes that align with the ground truth ranking
of edit intensities.

2. Implementation Details

2.1. Shape Chain Generation

We detail in Figure 9 the process of sampling parameter
chains from the parameter tree. Each parameter vector ✓i
can be represented as a dependency tree. We start by sam-
pling a parameter tree ✓0 using regressed parameters from
a real source shape in the realistic subset. We then succe-
sively sample parameters to edit by interpolating towards a
target shape in the realistic setting1.

1In the random setting, the source shape and subsequent parameters are
sampled randomly.



Model decoupled?
|P| = 10 |P| = 15 |P| = 20

FCD�REC ACD�REC FCD�REAL ACD�REAL FL2 AL2 FCD�REC ACD�REC FCD�REAL ACD�REAL FL2 AL2 FCD�REC ACD�REC FCD�REAL ACD�REAL FL2 AL2

LATEFUSION1024 � 1.751 1.431 3.006 2.756 1.913 1.707 2.150 1.579 2.941 2.925 1.366 1.241 1.591 0.944 2.620 2.182 1.054 0.805

LATEFUSION512 � 1.802 1.413 3.031 2.801 2.018 1.770 1.804 1.469 2.824 2.755 1.309 1.221 1.414 1.005 2.301 2.272 1.059 0.880

LATEFUSION256 � 1.807 1.486 3.026 2.928 2.079 1.810 2.034 1.380 2.852 2.718 1.342 1.203 1.737 1.018 2.743 2.306 1.106 0.838

OURS512⇥8 � 2.240 1.665 3.680 3.169 2.311 2.022 2.471 1.664 3.347 2.956 1.591 1.351 1.571 0.992 2.599 2.341 1.207 0.937

OURS512⇥4 � 1.751 1.494 3.236 2.859 2.168 1.884 2.378 1.540 3.098 2.850 1.432 1.271 1.659 1.087 2.636 2.401 1.166 0.898

LATEFUSION1024 � 1.773 1.452 3.066 2.794 2.002 1.734 1.704 1.290 2.787 2.667 1.212 1.184 1.502 1.049 2.279 2.242 0.999 0.817

LATEFUSION512 � 1.687 1.430 2.694 2.698 1.883 1.672 1.978 1.328 3.089 2.749 1.300 1.190 2.149 1.307 3.224 2.676 1.170 0.900

LATEFUSION256 � 2.057 1.555 3.071 2.824 2.043 1.743 2.306 1.630 3.342 2.987 1.443 1.305 2.397 1.394 3.514 2.734 1.170 0.923

OURS512⇥8 � 1.827 1.358 3.243 2.858 2.097 1.809 1.982 1.331 2.918 2.679 1.359 1.234 1.331 0.865 2.187 2.214 1.035 0.826

OURS512⇥4 � 1.647 1.348 3.028 2.826 1.961 1.765 1.698 1.240 2.713 2.582 1.328 1.211 1.450 0.884 2.268 2.163 1.053 0.821

Table 1. Chained shape editing ablation. We report detailed baseline results for our proposed chained shape editing task, for chain
lengths |P| 2 {10, 15, 20}, using the PC-AE trained latent editors. Both the average final error and average edit error are reported for the
Chamfer Distance (CD) and L2 distance (L2) metrics. We differentiate between distances to the reconstructed edited shape (CD � REC)
and distances to the real edited shape (CD � REAL), which is the most relevant metric for our task. We highlight in grey the model we
select for our qualitative results.

Model decoupled?
|P| = 10 |P| = 15 |P| = 20

FCD�REC ACD�REC FCD�REAL ACD�REAL FL2 AL2 FCD�REC ACD�REC FCD�REAL ACD�REAL FL2 AL2 FCD�REC ACD�REC FCD�REAL ACD�REAL FL2 AL2

LATEFUSION1024 � 1.773 1.452 3.066 2.794 2.002 1.734 1.704 1.290 2.787 2.667 1.212 1.184 1.502 1.049 2.279 2.242 0.999 0.817

+ O MAGNITUDE � 1.118 0.941 2.323 2.242 1.592 1.437 1.037 0.910 2.106 2.142 0.978 0.996 0.608 0.631 1.442 1.892 0.784 0.714

+ O DIRECTION � 0.688 0.360 2.109 2.054 0.822 0.551 0.360 0.279 1.903 1.944 0.410 0.329 0.137 0.341 1.358 1.747 0.207 0.316

LATEFUSION512 � 1.687 1.430 2.694 2.698 1.883 1.672 1.978 1.328 3.089 2.749 1.300 1.190 2.149 1.307 3.224 2.676 1.170 0.900

+ O MAGNITUDE � 1.206 1.017 2.328 2.300 1.628 1.445 1.192 1.015 2.241 2.311 1.027 1.027 0.777 0.762 1.727 2.039 0.816 0.731

+ O DIRECTION � 0.699 0.386 2.136 2.082 0.805 0.561 0.507 0.356 2.134 2.020 0.500 0.384 0.094 0.345 1.347 1.776 0.172 0.319

LATEFUSION256 � 2.057 1.555 3.071 2.824 2.043 1.743 2.306 1.630 3.342 2.987 1.443 1.305 2.397 1.394 3.514 2.734 1.170 0.923

+ O MAGNITUDE � 1.150 0.952 2.337 2.280 1.636 1.457 1.272 1.104 2.477 2.429 1.159 1.085 0.684 0.734 1.583 2.072 0.770 0.736

+ O DIRECTION � 0.719 0.423 2.185 2.108 0.846 0.610 0.747 0.449 2.267 2.112 0.695 0.468 0.267 0.463 1.422 1.804 0.309 0.402

Table 2. Oracle editing results. We report detailed baseline results when oracle magnitudes and directions are used for the chained shape
editing task, on all LATEFUSION models. We differentiate between distances to the reconstructed edited shape (CD � REC) and distances
to the real edited shape (CD � REAL), which is the most relevant metric for our task. Overall, the biggest gain for PC-AE based models is
observed when using oracle directions.

When boolean parameters with children are triggered, we
sample a random value for each child parameter. For scalar
parameters with a continuous domain, we sample a ran-
dom value from a discretized version of the parameter’s
range. After generating each parameter vector ✓i, we pass
it through a geometry checker (implemented in [12]) ensur-
ing that the resulting shape is valid. If the shape is invalid,
the whole chain is discarded and we start over from a dif-
ferent starting pair. Otherwise, the corresponding mesh is
synthesized using the shape program �⇥ and added to the
chain.

2.2. Text Instructions Generation

We detail in Figure 2 the process of synthesizing text in-
structions for the chained shape editing task. Starting from
an edit vector, we map the edit intensity and the parame-
ter name to a predefined vocabulary set which is randomly
sampled. Optionally, the generated instruction is para-
phrased using a pre-trained language model. Our instruc-
tion generation method is completely automatic and does
not require any human annotation or additional data.

2.3. Architecture details

Rendered View Feature Extractor. We use a ResNet-
50 [7] model pre-trained on ImageNet [5] to extract ren-
dered view features from the input shapes. Since all syn-
thetic meshes are centered at the origin and aligned, we do
not require multi-view features to ensure invariance to rota-
tion. Every mesh is rotated around the z-axis by an angle
✓ = ⇡

8 , assigned a base RGB color and rendered from a
static viewpoint using the trimesh [4] library.
Autoencoders. We encode pointclouds using a PC-AE [1]
model pre-trained on the ShapeNet [3] dataset with a latent
dimension d = 256. We also use a 3D2VS [17] model
also pre-trained on ShapeNet with a latent dimension
d = 512⇥ 8. Note that our method is agnostic to the choice
of autoencoder model, and can be adapted to any other
shape or pointcloud representation.

PC-AE Latent Editors. We detail here the architecture of
our latent editor models.

• LATEFUSIONX is composed of a shape latent encoder,



Figure 1. Comparing predicted edit magnitude to ground truth edit intensity. We plot confusion matrices comparing the predicted edit
magnitudes binned in the interval [1, 9] to the ground truth edit intensities extracted from our metadata. We show results for three decoupled
baselines: LATEFUSION1024, LATEFUSION512, and OURS512⇥4. Overall, we observe a strong correlation between the predicted edit
magnitudes and the ground truth edit intensities. However, a bias can be observed in the OURS512⇥4 model, which tends to deviate from
the diagonal predictions, and avoids predicting the maximum possible magnitude range.

Figure 2. Synthesizing edit instructions. Our method generates synthetic text instructions by first applying rule-based generation to
translate parameter changes into natural language. The edit intensity is mapped to a natural language intensity depending on the parameter
type. To add diversity, the vocabulary describing the edit is randomly sampled, edit directions are randomly inverted, and a paraphrasing
transformer model is optionally employed to augment the final instructions.

an edit direction prediction module, and an edit magni-
tude prediction module. The shape latent encoder is a
2-layer MLP with hidden dimensions [256, 256]. We use
ReLU activations for all layers, and a linear activation for
the output layer. The edit direction prediction module is a
4-layer MLP with hidden dimensions [X, 256, 256, 256].
Since we normalize the predicted edit vector, we remove
the final bias term from the output layer. We use batch
normalization [8] for all layers except the output layer.
The edit magnitude prediction module is a 3-layer MLP
with hidden dimensions [256, 128, 64] respectively.
For all modules, we use dropout [14] with a probability
of 0.1 for all layers except the output layer.

• OURS512⇥X only uses the edit direction prediction mod-
ule which is an X-layer MLP with hidden dimensions
of the size of the latent space of the autoencoder. We

use batch normalization [8] for all layers except the out-
put layer, dropout with a probability of 0.2, and ReLU
activations for all layers. We separately predict the edit
magnitude and edit direction using the same modules as
LATEFUSION.

We illustrate in Figure 4 the architecture of the latent editor
diffusion model.

Text Encoder Model. We use a pre-trained BERT [6]
model to encode the language instructions into a 768-
dimensional feature vector. We employ the base uncased
model with 12 layers, 12 self-attention heads, and 110M
parameters. Training with larger instances of BERT or with
LLM-extracted text features could potentially improve the
generalization ability of our models on unseen language
instructions.

3D2VS Latent Editors. We fine-tune a latent diffusion



Figure 3. Diffusion-based latent editor. We illustrate the archi-
tecture of the transformer-based latent editor diffusion model used
to edit 3D2VS [17] latents. || indicates concatenation of the input
features.

Figure 4. MLP-based latent editor. We illustrate the architecture
of the MLP-based latent editor used to edit PC-AE [1] latents, for
the decoupled magnitude and direction prediction models. || indi-
cates concatenation of the input features.

model trained in the space of a frozen 3D2VS [17] auto-
encoder. The best performing model uses a depth of 24
layers with 8 channels and a latent dimension of 512 ⇥ 8,
and conditions the model on text features by feeding
them as keys and values to the cross-attention layers. We
illustrate in Figure 3 the architecture of the latent editor
diffusion model.

2.4. Training

Shape Sampling. We sample N = 4096 points from
each synthesized mesh using the triangle point sampling
scheme [16]. Pointclouds sampled from synthetic shapes
are centered at the origin, normalized to the unit sphere,
and rescaled alongside each axis to align with ShapeNet
statistics. A minor downside of normalizing shapes is that
the model will only be able to learn to apply edits relative
to the scale of the input shapes.

Figure 5. t-SNE embeddings of shape reconstructions. We plot
t-SNE embeddings [15] of the rendered view features of the input
shapes and their reconstructions in the space of the rendered view
feature extractor �R. We also provide the PSNR ratio between
input and reconstructed shape rendered views.

PC-AE Latent Editor. We train our models using the
Adam optimizer [10] with a learning rate of 1 ⇥ 10�4, and
an effective bath size of 128. The learning rate is linearly
increased from 1 ⇥ 10�6 to 1 ⇥ 10�4 during the first 8
epochs, and then gradually decayed back to 1 ⇥ 10�6

following a cosine annealing schedule [11]. We train
our models on two NVIDIA V100 GPUs with 32GB of
memory each. Training on the full realistic set takes around
60 minutes, with pre-extracted text and pointcloud features.
Almost all models converge within 50 epochs, and we use
the best model checkpoint based on the validation loss for
all experiments.

3D2VS Latent Editor. To fine-tune the latent diffusion
models, we use gradient clipping and a half-cycle cosine
after a warmup of 20 epochs. We train the models for
200 epochs with a batch size of 32 on eight NVIDIA V100
GPUs with 32GB of memory each. Training and sampling
strategies are the same as in [9, 17].
All text and pointcloud features are pre-extracted and
cached to disk to speed up training.

3. Shape Reconstructions

We illustrate in Figure 12 the top-8 and bottom-8 shape
reconstructions from the 3DCoMPaT [13] dataset into the
GeoCode representation, ranked by rendered view feature
similarity. Overall, we observe that the reconstructions are
of high quality, and that the model is able to capture the
main shape features of the input shapes. The worst recon-
structions are discarded from the shape interpolation pro-
cess as they do not generally lead to realistic reconstructed
shapes.



Figure 6. ShapeWalk dataset statistics. We plot the distribution of the number of shapes per chain (left), of the intensity of edits (middle),
and of the complexity of edits (right). For the edit complexity, note that the frequency is provided in log-scale. The vast majority of edits
in the realistic subset are granular, affecting a single shape parameter.

In order to further investigate the quality of the reconstruc-
tions, we compute t-SNE embeddings [15] of the rendered
view features of the input shapes and their corresponding
reconstructions in the space of �R, the rendered view fea-
ture extractor. We show the results in Figure 5. While re-
constructed (in purple) and source shapes (in yellow) from
the 3DCoMPaT [13] dataset form two distinct clusters, we
observe that the reconstructions are generally close to the
input shapes in the feature space. The filtered reconstruc-
tions (in blue) are more likely to be outliers in the feature
space, and are thus discarded from the shape interpolation
process to avoid unrealistic shape interpolations.

4. Dataset Insights

4.1. Shape Chains

In Figures 10, and 11, we showcase sampled shape chains
from our dataset truncated to the first N = 9 shapes.
For each chain edge, we show the corresponding language
instruction describing the parameter changes necessary to
transition from one shape to the next.

4.2. Dataset Statistics

In Figure 6, we plot the distribution of the number of shapes
per chain (left), of the intensity of edits (middle), and of the
complexity of edits (right) in the realistic subset2. The edit
complexity corresponds to the number of shape parameters
affected by the edit. For edit complexity, the frequency is
provided in log-scale. We observe that the vast majority of
edits in the realistic subset are granular, and affect a single
shape parameter. Chain lengths range from N = 6 to N =
29 shapes, with an expected length around N = 15 shapes.
The intensity of edits is not uniformly distributed and skews
heavily towards low-intensity edits, which is expected.

2Note that we do not show statistics for the random subset as all param-
eters including chain length and edit intensity are static and determined at
generation.

5. Diffusion-based Editor Generation Process

We illustrate in Figure 7 the process of generating a shape
chain using a diffusion-based latent editor model. We show-
case the generation of a shape chain from a source shape to
a target shape using our latent editor operating in the space
of the 3D2VS autoencoder, illustrated in Figure 3. We show
32 intermediate shapes generated by the diffusion model for
each sampling step.



Figure 7. Diffusion-based shape chain generation. We illustrate in this figure the process of generating a shape using a diffusion-based
latent editor model, for a source shape (blue) and a text instruction, to obtain a final target shape (orange) after T = 32 diffusion steps.



Figure 8. Chain samples for additional classes. We showcase in this figure additional chain samples for the realistic subset, for the table
and vase classes. Our method is able to generate realistic shape chains for a variety of classes, given support for the corresponding shape
programs. In our case, GeoCode [12] supports the classes we use in this work. Extending our method to new classes will require extending
these underlying shape programs.



Figure 9. Parameter tree sampling. We detail in this figure the process of sampling parameter chains from the parameter tree. Each
parameter vector ✓i can be represented as a dependency tree. We start by sampling a random parameter tree ✓1 from the root node of
the tree (or using regressed parameters from a real shape in the realistic subset). Edit parameters are then sampled randomly (or using
interpolation for the realistic set) from the tree until the desired chain length is reached (or until the target shape is reached).



Figure 10. Additional dataset samples. We showcase sampled chains from our dataset truncated to the first N = 9 shapes. We
color shapes based on their proximity to the starting shape (blue), and the ending shape (orange). For each chain edge, we show the
corresponding language instruction describing the parameter changes necessary to transition from one shape to the next. All shapes are
normalized to the unit cube and centered at the origin.



Figure 11. Additional dataset samples. We showcase sampled chains from our dataset truncated to the first N = 9 shapes. We
color shapes based on their proximity to the starting shape (blue), and the ending shape (orange). For each chain edge, we show the
corresponding language instruction describing the parameter changes necessary to transition from one shape to the next. All shapes are
normalized to the unit cube and centered at the origin.



Figure 12. Shape reconstruction examples. We illustrate in this figure the original shapes from the 3DCoMPaT [13] dataset (yellow),
and their corresponding reconstructions into the GeoCode representation (purple). In the top two rows, we show the top-8 reconstructions
ranked by rendered view feature similarity, and the bottom-8 reconstructions ranked by rendered view feature similarity in the bottom
two rows. While top reconstructions are generally of high quality, the bottom reconstructions are discarded from the shape interpolation
process as they do not generally lead to realistic reconstructed shapes. We discard these shapes to avoid unrealistic shape interpolations in
our shape chain generation process.


