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Abstract

Incremental learning enables artificial agents to learn from sequential data.
While important progress was made by introducing this paradigm to deep
neural networks, incremental learning remains a very challenging problem.
This is particularly the case when no memory of past data is allowed, in
which case catastrophic forgetting has a stronger effect. We tackle class-
incremental learning without memory by adapting prediction bias correction,
a method which makes predictions of past and new classes more compara-
ble. It was proposed when a memory is allowed and cannot be directly used
without memory, since samples of past classes are required. We introduce
a two-step learning process which allows the transfer of bias correction pa-
rameters between reference and target datasets. Bias correction parameters
are first optimized offline on reference datasets with access to an associated
validation memory. The obtained correction parameters are then transferred
to target datasets, for which no memory is available. The second contribution
is to introduce a finer modeling of bias correction by learning its parameters
per incremental state instead of the usual past vs. new class modeling. Our
proposed dataset knowledge transfer scheme is applicable to any incremental
method operating without memory. We test its effectiveness by applying it to
four existing methods. Evaluation with four target datasets and different con-
figurations shows consistent improvement, with practically no computational
and memory overhead.
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1
Introduction

Incremental learning enables artificial agents to learn in dynamic environments in which
data is presented in streams, while preserving previously acquired knowledge. This type
of learning is needed when access to past data is limited or impossible, but is affected by
catastrophic forgetting [37] - a phenomenon consisting in a drastic performance drop for
previously learned information when ingesting new data.

In this work, we focus on class-incremental learning for computer vision, a specific setting
of incremental learning in which image classes are split into multiple states and sequen-
tially fed to a learning agent. Works such as [45, 11, 21, 55, 59, 14] alleviate the effect
of forgetting by replaying past data samples when updating class-incremental models.
When such a memory is allowed, incremental learning becomes an instance of imbal-
anced learning [18], in which new classes are naturally favored as they are represented by
a larger number of images. As a result, various correction methods tackling classification
bias have been successfully introduced in [11, 55, 6, 59].

While important progress was made when a fixed memory is allowed, this is less the case
for class-incremental learning without memory. This last setting is more challenging and
generic since no storage of past samples is allowed. In absence of a rehearsal memory, ex-
isting methods become variants of Learning without Forgetting (LwF) [29] with different
formulations of the distillation term, or added regularization constraints. Importantly,
bias correction methods become inapplicable without access to past classes samples.

Our main contribution is to enable the use of bias correction methods, such as the BiC
layer from [55], in class-incremental learning without memory. We thus mainly focus
on bias correction, as it is both simple and effective in incremental learning with mem-
ory [9, 36]. Authors of BiC [55] use a validation memory which stores samples of past
classes to optimize parameters. Here, we learn correction parameters "offline" on a set of
reference datasets and then transfer them to target datasets. While reference and target
datasets follow different data distributions, we hypothesize that optimal bias correction
parameters are stable enough to be transferable between them. Our proposed method is
applicable to any class-incremental learning method, as it only requires the availability
of raw predictions provided by deep models.



Figure 1.1 – Illustrating our proposed transfer-based bias correction method. We propose
to learn a bias correction layer on reference models and to transfer it to target models
during evaluation.

The second contribution of this work is to refine the definition of the bias correction layer
introduced in [55]. The original formulation considers all past classes equally in the cor-
rection process. With [36], we hypothesize that the degree of forgetting associated to past
classes depends on the initial state in which they were learned. Consequently, we propose
"adaptive BiC" (adBiC ), an optimization procedure which learns a pair of parameters
per incremental state, instead of a single pair of parameters as proposed in [55].

We provide a comprehensive evaluation of our method by applying it on top of four
backbone class-incremental learning methods. Four target visual datasets with variable
domain shift with respect to reference datasets, and varying numbers of incremental states
are considered. A significant improvement in top-1 accuracy is obtained for almost all
tested configurations. Importantly, the additional memory needs are negligible since only
a compact set of correction parameters is stored.
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2
Background

We first provide a formalization of the class-incremental learning setting we consider in
Section 2.1, and we introduce other related scenarios. We then describe the challenges
associated with learning multiple tasks sequentially in Section 2.2.

2.1 Problem setting

2.1.1 Description

A large number of problem settings have been proposed for class-incremental learning in
the literature [51]. Some works consider disjoint sets of classes for each task to be learned
[29, 11, 21, 14], while others allow subsequent tasks to share classes [4, 5], effectively
blurring or even removing task boundaries. Some works introduced models to be trained
on online data streams [4, 3, 24], while most of other works allow samples to be seen more
than once. Overall, the realism and relevancy of these proposed settings greatly vary.

In this work, we consider the offline-disjoint scenario which is the most common in the
class-incremental learning literature. Our approach mainly differs to a lot of other bias
correction methods in the fact that we do not allow for the use of a rehearsal memory as
an additional constraint.

Formalization. A class-incremental learning problem is composed of a sequence of S
states (or tasks). The first state is referred to as the initial state, and the S−1 remaining
states are incremental states. In the sth state, a set of Ps new classes is learned.

We suppose that we have access to sets of images X and labels Y . A modelM1 is initially
trained on a dataset D1 = {(x, y) | x ∈ Xj

1 , y ∈ Y
j
1 ; j ∈ P1}, where X1 ⊆ X and Y1 ⊆ Y

are the sets of training images and their associated labels. We note Ns the set of all classes
seen until the sth state included, such that: Ns = Ns−1 ∪ Ps = P1 ∪ P2 ∪ ... ∪ Ps−1 ∪ Ps.
Furthermore, all tasks are disjoint and we have: Pi ∩ Pj = ∅ ∀i, j ∈ J1, SK, i 6= j.

Ms is updated with an incremental learning algorithm A using training images from Ds.
Note that in class-incremental learning, the model does not have knowledge of the task
on which it is evaluated. Ds includes only new classes samples, butMs is evaluated on
all classes seen so far (j ∈ Ns). In Figure 2.1, this class-incremental learning process is
illustrated.



Figure 2.1 – Class-incremental learning process illustrated after s states. For each state,
the model is trained on a subset of all classes of a dataset, and evaluated on all classes
seen so far after training.

This makes the evaluation prone to catastrophic forgetting due to the lack of past exem-
plars [9, 36].

Assumptions. Additionally, we consider here a class-incremental setting operating un-
der the following assumptions:

• no memory. Most methods allow for the storage of a small memory preserving
knowledge from past tasks, often in the form of a limited amount of samples from
seen classes. In this work, we consider a setting in which no memory of past samples
is allowed, which is considerably more challenging [9].

• pre-training. Some works allow for the pre-training of incremental models on a
large amount of initial data (generally half of the size of the training set), effectively
adding a larger task at the beginning of the learning sequence [14, 57, 22]. Here, we
consider that all models are trained from scratch, and that we have |P1| = . .. = |Ps|.

• parameter growth. Some methods allow for a significant growth of the number
of parameters added to the model after each state. Here, following [45], we consider
that an incremental learner should have bounded computational requirements (or
very slowly growing).

• offline training. Finally, following a largely adopted setting in previous works,
we allow for unlimited access to samples from the active state. Multiple parameter
updates on a single sample are therefore allowed during training.

Assumptions made when designing a continual learning algorithm greatly vary, which
makes direct comparison between methods particularly difficult. In this work, we propose
to use a simple setting while restricting the use of memory or extra parameters.

4



Figure 2.2 – Illustrating the notations used with a typical CNN incremental model in
the sth state. The feature extractor φs maps an image I to a feature vector (in orange).
The classifier function hs maps this representation to a prediction vector o with |Ns|
components.

Classifier. We give here some notations used to describe the learned models, which we
also illustrate in Figure 2.2. With each incremental modelMs, we associate a function
fs defined as:

fs : X → R|Ns|

x 7−−−−→hs ◦ φs(x)
(2.1)

where φs : X → Rd is the feature extractor encoding a sample x ∈ X into a feature vec-
tor of dimension d, and hs : Rd → R|Ns| is the classifier function. The number of outputs
of our classifier is thus growing with the number of seen classes, which translates into the
addition of output heads to the classifier layer after each task in the context of a typical
deep architecture.

In practice, classifier weights corresponding to past tasks are usually frozen when training
on new tasks. Formally ∀t ≤ s, ∀x ∈ Xt, we have:

[hs ◦ φs(x)] ||Nt| = ht ◦ φs(x) (2.2)

Where v|k denotes the vector v truncated to its first k elements. Indeed, when no access
to past class features is possible, updating decision boundaries corresponding to past
classes is likely to result in a loss of performance on past tasks.



Figure 2.3 – Comparing the task-incremental learning paradigm to class-incremental
learning. In task-incremental learning, when evaluating on a task Dt after s tasks, the
resulting softmax prediction vector qs is masked so that only output activations corre-
sponding to classes from Dt are non-zero.

2.1.2 Related scenarios
We briefly present here some scenarios related to class-incremental learning, and provide
some insights into their main similarities and differences.

Transfer learning. In transfer learning, given a set of source tasks T1, . .., Tn−1 and a
target domain Tn, the aim is to train a prediction function f on Tn using the knowledge
from previous tasks [40]. Class-incremental learning can thus be seen as a transfer learn-
ing problem with additional constraints, in which the resulting prediction function f is
also evaluated on previous tasks.

Multi-task learning. In [58], the authors define multi-task learning as a problem in
which given a set of tasks {T1, . .., Tn}, the aim is to learn the n tasks simultaneously
by leveraging knowledge contained in all of them. Class-incremental learning essentially
replaces the simultaneous aspect of MTL with a sequential learning of tasks. Knowledge
priors can still be propagated through tasks, with the use of mechanisms like distillation
and rehearsal (as seen later in Section 3).

Task-incremental learning. Task-incremental learning is one of the closest scenarios
to class-incremental learning explored in the literature [33, 35]. The main setup and
assumptions are identical, with the only difference that task-incremental models are pro-
vided with an oracle access to a task identifier at inference. Given a classifier function
fs learned in a task-incremental setting, predictions for a test sample x ∼ Dt can thus
simply be masked with:

fs(x)�mt, mt ∈ {0, 1}|Ns| (2.3)

where t is the task identifier associated to sample x,mt is the corresponding binary mask
on the output scores, and � is the Hadamard product (see Figure 2.3). In practice, this
eliminates two of the most prominent problems of class-incremental learning: inter-task
confusion and task-recency bias (see following Section 4.2).

6



Supervised learning. Finally, supervised learning can naturally be related to continual
learning and constitutes an obvious upper-bound of incrementally learned models when
training on the same data distribution. We illustrate this here by detailing the varying
objectives of continual and supervised learning, in the context of the classification.

We consider samples from a dataset D and a class-incremental setting with S states.
Following notations from Section 2.1.1 we have: D =

⋃S
s=1Ds.

Let HS be the functional space of classifiers from samples x ∈ X to the output activation
space R|NS |. Let ` be an error function defined as:

` : HS ×X × Y → {0, 1}

f,x, y 7 −−−−−→1{y}

(
arg max

c∈NS

f(x)c

)
(2.4)

where 1 denotes the indicator function. In a supervised learning setting, we search for
a function f̂ that is such that:

f̂ = inf
f∈HS

E(x,y)∼D[`(f ;x, y)] (2.5)

whereas in an incremental learning setting, we explicitly and successively search for
functions f̂s defined in each of the S states as:

f̂s = inf
f∈Hs

E(x,y)∼Ds [`(f ;x, y) + Ω(f,Ks−1;x, y)] (2.6)

with the implicit1 goal of reaching a function f̂S that also minimizes the objective of
(2.5). In order to reach this implicit goal, an additional term utilizing knowledge Ks−1
from the previous state is added to the main objective. In a memoryless scenario, this
knowledge is reduced to the classifier learned in the preceding state. The function Ω can
then, as an example, constrain the drift of activations across states:

Ω(f, fs−1;x, y) = ‖fs−1(x)− f(x)‖F (2.7)

This is analogous to knowledge distillation [20], and is a common way to reduce forgetting
in continually learned models [29, 13, 21].

1In works using meta-learning to tackle class-incremental learning, the global objective of (2.5) can
be formulated as a meta-loss and is then explicitly optimized for.



Figure 2.4 – Average top-1 accuracies on the first and second split of Cifar-100 (split in
ten folds), of a fine-tuning model trained incrementally. On both tasks and after only a
few states, the model performance suffers from catastrophic forgetting.

2.2 Known challenges

Various challenges associated with incremental learning have been identified, often through
empirical studies of fine-tuned models [49, 36]. We discuss here the main challenges of
learning classification models incrementally (or continually).

Catastrophic forgetting. Catastrophic forgetting or catastrophic inference is an in-
tensely studied phenomenon which received a lot of attention in the early literature on
deep neural networks [37, 44, 16]. It is widely described as a drastic loss in performance
on previous tasks when a neural network learns a new task. This performance loss is anal-
ogous to the loss of previously learned information in biological systems, and is therefore
generally referred to as "forgetting". However, while forgetting is mostly gradual in natu-
ral cognitive systems, neural networks which do not make use of any stability constraints
will exhibit abrupt forgetting patterns on previously acquired knowledge when new in-
formation is presented to them [16].

To illustrate this point, we incrementally train a ResNet-18 [19] network on the Cifar-
100 dataset, which we split into ten states. Following our proposed setup in Section 2.1.1,
each state contains 10 classes and states do not overlap. We use a common fine-tuning
strategy in which the feature representation φ is updated in all states, but the classifier h
is frozen for outputs corresponding to past classes in order to preserve previously learned
decision boundaries [8, 36].

In Figure 2.4, we plot the single-task accuracy on the first task (blue) and the second task
(orange), evaluated on D1 and D2 respectively. While the model performs well initially
on each of the two tasks, the performance immediately drops below 5% after the second
state for the first task. For the second task, this forgetting is also abrupt - although more
gradual. This is a common pitfall of incrementally learned models, and is not exclusive
to discriminative models.
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Figure 2.5 – Illustrating the representation drift phenomenon in incrementally learned
models, when retraining on past samples is prohibited. After t − 1 states, the learned
feature representation φt is no longer compatible with the decision boundaries learned in
the initial state for samples from the first split D1.

In order to prevent catastrophic forgetting, incremental models must use methods which
enforce the stability of previously acquired knowledge, while allowing the acquisition of
new information. This problem is known as the stability-plasticity dilemma [38].

Various culprits have been identified as factors of catastrophic forgetting in the literature
[21, 36]. Here, we focus on three of the main problems of incremental supervised learning.

Representation drift. When updating a model on a new task Tn after learning a set
of tasks T1, . .., Tn−1, the representation of past tasks is degraded as the model does not
have full access to past tasks samples.
Formally, for a class-incremental learning process with at least s+ 1 states and x ∼ Ds,
there is no guarantee to have: ‖φs(x)− φs+1(x)‖F ≤ ε. Therefore, learned (frozen) de-
cision boundaries may no longer be compatible with representation φs+1. The updated
feature extractor φs+1 may not even properly enable the separation of classes from Ps, in
which case incremental learning strategies focusing on updating classifier weights become
ineffective.

In Figure 2.5, representation drift is illustrated for samples belonging to a first subset D1,
in an incremental learning process with t disjoint tasks. After t − 1 states, the updated
feature extractor φt is no longer compatible with the decision boundary initially learned,
which causes misclassifications for classes from the first task.
Note that in this example, recovering a perfect accuracy on the first task would be pos-
sible without having to update the feature representation φt by correcting the learned
decision boundaries for the first two classes (which is equivalent to updating ht). In
practice however, the final feature projection of samples from D1 may not even properly
separate classes from P1 anymore.

To confirm this, we train a model across three splits of ImageNet-100 and extract the
features of samples belonging to the first split. We visualize these features in Figure 2.6
for a simple fine-tuning method (top row) and for Lucir (bottom row). With fine-tuning,
after learning a second task, the updated feature representation φ2 is no longer able to
separate data from the first task, and most structure is immediately lost.



(a) Fine-tuning

(b) Lucir [21]

Figure 2.6 – t-SNE [52] visualization of the embedding space of a ResNet-18 [19] model
trained with fine-tuning (top) and Lucir (bottom) on ImageNet-100 across three tasks,
for samples from the first ten classes learned.

We compare this with the same visualization for Lucir (bottom row), which makes use of
a stability constraint in the feature representation of samples across models from different
states. Structure is preserved across states, although inter-class separations are defined
more clearly with φ1 compared to subsequent models.

Some solutions to representation drift explored in previous works include:

• penalizing changes in representations [21, 29, 45]

• updating the classifier layer with a memory of past samples [11, 23, 45]

• predicting the drift of feature vectors [57, 23]

In the memoryless scenario we explore here, this phenomenon is amplified as performing
parameter updates on past samples becomes impossible.

Inter-task confusion. Incremental models are evaluated on classes from all tasks.
However, during training, models are updated jointly only with classes belonging to a
single task. Therefore, the model is unable to optimally learn cross-task features [49],
that is features enabling the model to discriminate between classes belonging to different
tasks.
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Figure 2.7 – Illustrating inter-task confusion when retraining on past samples is prohib-
ited. In the second state, while we do learn a feature representation φ2 enabling the
separation of classes from D2, the model cannot differentiate between circles and dia-
monds as they were seen in different tasks.

Figure 2.8 – t-SNE [52] visualization of features extracted with a model trained incre-
mentally with Lucir over two tasks (left) and with a model trained jointly with all
data (right), on a fine-grained subset of ImageNet. Three classes from the first task
(C0, C1, C2 ∼ P1) and from the second task (C13, C14, C15 ∼ P2) are selected to highlight
inter-task confusion.



In Figure 2.7, the problem of inter-task confusion in incrementally learned models is il-
lustrated. With a supervised classification loss in a memoryless scenario, we are likely to
properly separate classes belonging to the same task. However our model has no incen-
tive to learn a feature space φ2 able to separate classes from different tasks. Indeed, in
a disjoint class-incremental setting without memory, samples from D1 and D2 cannot be
used jointly to optimize the objective function.

This important shortcoming of incrementally learned models is experimentally verified
in Figure 2.8, in which the representations of samples from two different tasks D1 and
D2 (left) are compared to their representations when the model is jointly trained using
D1 ∪ D2 (right). While the incrementally trained model manages to discriminate classes
within the same task (although some ambiguities are noticeable for C13 and C14), classes
from different tasks clearly overlap. With the jointly learned representation, classes are
clearly separated with very little inter-class ambiguity. Note that we trained these mod-
els on a fine-grained subset of ImageNet-100 and selected highly ambiguous classes to
better highlight these effects.

In more general class-incremental learning settings, solutions proposed to inter-task con-
fusion include:

• adding margin losses in combination with reserved samples to alleviate confusion
between classes [21, 14]

• hallucinating features from future classes and maximizing distance to hallucinated
(incorrect) future class proxies [15]. This regularization method is particularly
clever, but requires access to another modality for future classes (in [15], the text
descriptions of future classes are used to hallucinate probable features), in combina-
tion with a generator network - which partially breaks the common class-incremental
learning assumptions.

Again, this problem is even more prominent without access to a memory as new and past
samples are never used together in the same batch. In [49], authors show that cross-task
features are responsible for a significant chunk of the performance gap between class-
incremental methods and standard joint training.
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Figure 2.9 – Frobenius norm of classifier weights dedicated to classes from each state (left)
and mean prediction scores per state (right) for a Lucir model trained on Cifar-100
with 10 splits.

Task-recency bias. Finally, task-recency bias is a phenomenon recognized as one of the
main sources of catastrophic forgetting in neural networks [55, 6, 36], and is the one we
attempt to tackle in this work.

The problem of task-recency bias can be summarized as follows. When learning multiple
tasks sequentially, there is no guarantee that the magnitude of classifier scores will remain
balanced across classes learned in different states. In practice, classifier scores are heavily
biased towards the last task which translates in misclassifications towards the most recent
classes.

In Figure 2.9, we illustrate the task-recency bias problem by plotting the Frobenius norm
of class embeddings for each task (left) and the mean prediction scores per state (right)
for an incremental model trained with Lucir across S = 10 Cifar-100 splits. The bias
towards more recent classes is clearly evidenced by the increasing magnitude of classifier
norms and prediction scores as a function of the state.

Solutions to task-recency bias proposed in the literature include:

• using a memory to correct bias by applying linear transformations to outputs [6, 55]

• retraining the classifier layer on a balanced dataset using saved exemplars [11]

However, there is a significant gap in existing works regarding bias correction when access
to a memory of past samples is forbidden. In this work, we attempt to bridge this gap
by proposing a method for memoryless bias correction.





3
Related Works

Incremental learning is a longstanding machine learning problem [17, 34, 50], which wit-
nessed a strong growth in interest after the introduction of deep neural networks. Detailed
reviews of existing approaches are proposed, among others, in [9, 28, 36, 41]. Here, we an-
alyze works most related to our proposal, which tackles class-incremental learning while
keeping memory and computational requirements constant, or nearly so, during the learn-
ing process.

Following assumptions made in Section 2.1.1, we focus here on class-incremental learn-
ing methods working under the disjoint assumption, in the offline formulation - that is,
allowing unrestricted access to the whole dataset in each task. We focus particularly on
methods which address task-recency bias, and were designed for class-incremental learn-
ing with memory.

In the first section, we will describe the main categories of methods used to solve the
class-incremental earning problem, with some examples.

In the second section, we focus more specifically on methods relevant to this work, and
on the backbone class-incremental learning methods we build upon.

3.1 Main approaches

Multiple categorizations of deep continual learning methods have been proposed in pre-
vious studies [36, 39]. Most methods are in practice hybrid and generally employ a
combination of rehearsal and regularization or bias correction approaches, as highlighted
in Figure 3.1. Following [36], we focus here on three of the main approaches for class-
incremental learning.

Bias correction approaches. The goal of bias correction approaches is to correct the
task-recency bias of incrementally learned models. Correcting this bias can involve:

• transformations of the output scores of a CNN model [6, 55, 7]

• adding a balanced fine-tuning stage to alleviate its effects [11, 49]

• or performing inference without using classifier weights [45, 21, 57]. In this case,
incoming samples are classified using learned class embedding means (also referred



to as "prototypes" in the literature.). The nearest class embedding is then generally
used to infer the target class of the sample.

Incremental learning methods falling into this last category usually incrementally train
using classifier weights, before discarding the layer at inference and performing classi-
fication using prototypes. However, a recent approach proposes instead to completely
remove the classifier layer and learn an embedding network with metric learning losses
instead of classification losses [57].

Our proposal is closely related to bias correction methods, as we also employ a linear
bias correction scheme derived from [55]. In order to estimate the amplitude of the
task-recency bias in order to properly correct it, most methods make use of a memory
containing either dataset statistics [6] or past exemplars [55, 59].

In this work, we tackle two important limitations of existing bias correction methods.
First, they are inapplicable without memory because they require the presence of past
class samples: we propose to transfer bias correction layer parameters between datasets
to address this problem. Second, the degree of forgetting associated to past classes is
considered equivalent, regardless of the initial state in which they were first learned: we
refine the linear layer from [55] to improve the handling of task-recency bias.

Regularization approaches. The wide majority of class-incremental learning methods
make use of an information preserving penalty [13]. This penalty is generally implemented
as a loss function which reduces the divergence between the current model and models
learned in preceding incremental states, in order to maximize the overall performance on
all seen classes.

Regularization methods employ additional regularization terms to the objective loss func-
tion implementing this penalty, specifically designed to minimize the effects of catas-
trophic forgetting. These regularization terms usually aim at:

• explicitly reducing the drift of parameters important for performance on classes
seen in previous states [26, 2]

• or reducing the drift of higher-level representations for past classes. This can be
done:

– at the feature level [21], in which case methods will generally make use of
past exemplars to evaluate and reduce the change in feature representations
of previously learned classes.

– at the output level [29, 45], which works similarly to feature-level penalties,
and is analogous to knowledge distillation [20].

– or simultaneously at multiple representation levels [21, 14].
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MAS [2]

IL2M [6]

ScaIL [7]

EEIL [11]

PODNet [14]

LUCIR [21]

FeatAdapt [23]

EWC [26]

GenFeat [30]

Mnemonics [32]

GDumb [43]

MerGAN [54]

BiC [55]

WA [59]

SDC [57]

AANets [31]

LwF.MC [45]

Ghost [15]

LwM [13]

iCaRL [45]

SIW [8]

Figure 3.1 – Venn diagram of class-incremental learning methods operating over the
disjoint tasks assumption. Almost all methods are mainly designed to take advantage of
a rehearsal memory, or rely on pseudo-rehearsal based on synthetic samples or features.

In [39], the authors propose to discriminate between regularization terms constraining the
outputs of a model - referred to as functional regularization methods, from regularization
methods operating at intermediate levels, coined structural methods.

Regularization methods generally have the drawback of inducing additional memory costs,
as most of them require to save an instance of the model in the previous state or a memory
of feature vectors or selected exemplars, in order to evaluate representation drift. These
methods are thus mostly used in combination with a rehearsal memory.

Rehearsal approaches. Rehearsal methods or replay methods make use of a rehearsal
memory preserving knowledge from past tasks to preserve model performance when train-
ing on future tasks. These methods allow for the storage of a small memory generally
containing either past tasks samples [45, 11, 21, 14, 32, 5] or features [23, 56]. In practice,
this implies poor scalability when memory size is not limited.

In [53], the authors also show that although rehearsal is effective at keeping models in the
first found low-loss region in early tasks, its usage can ultimately harm generalization. In
this work, we consider a setting in which no memory of past samples is allowed, which is
considerably more challenging [9].

Rehearsal is not directly relevant in the context of this work, but overwhelmingly used in
class-incremental learning works since [45] - while very little work has been done in the
memoryless scenario we consider here.



3.2 Methods

Here we focus on methods relevant to the class-incremental learning framework and closer
to our assumptions, which we briefly describe. Methods directly used in this work are
highlighted in blue.

LwF. Learning without Forgetting (LwF) [29] is one of the earliest works tackling catas-
trophic forgetting in deep neural networks. This method exploits knowledge distilla-
tion [20] to preserve information related to past classes during incremental model updates,
and thus belongs to the functional category of regularization approaches introduced in
Section 3.1.
In the sth state, for a sample (x, y) ∈ Ds, LwF trains incremental models by adding the
following distillation term to a cross-entropy loss:

L(x) =

|Ns−1|∑
k=1

πs−1
k (x) log(πs

k(x)) (3.1)

where πs−1
k (x) and πs

k(x) are the temperature-scaled output scores from the learned
classifier functions fs−1 and fs respectively. As mentioned in the previous section, this
implies access to a saved instance of the model in the previous incremental state. In
[13], the authors build on this work by adding an attention loss to the distillation loss,
extended from [48].

iCaRL. Incremental classifier and representation learning (iCarl) [45] is the first work
proposing the use of a rehearsal memory in combination with a distillation loss in the
context of deep incremental learning, by building upon LwF. The authors also propose
to discard the classifier layer and use a nearest-mean-of-examplars classifier.

EEIL. In [11], the authors propose to correct bias by adding a fine-tuning stage at the
end of each state. This additional training stage is performed on a class-balanced dataset
composed of reserved samples from current and past tasks, to alleviate the effects of
task-recency bias.

Bias Correction. In [55], the authors propose a bias correction method (BiC ), which
introduces an additional layer to rebalance the raw scores of a deep incremental model.
A validation set is used to optimize the parameters of this linear layer, which modifies
the predictions of the deep model learned in a given incremental state. We build on this
work to better handle task-recency bias by adding task-specific parameters in this linear
layer, and by enabling its use in a memoryless scenario.

LUCIR. In [21], the authors propose to learn a unified classifier incrementally via rebal-
ancing (Lucir). To that end, three main contributions are proposed:

• A cosine normalization layer is introduced before the softmax activation, to improve
the comparability of output scores (helping task-recency bias). The distillation loss
from LwF is slightly adapted to accommodate for this modification.
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• A less-forget constraint is proposed to prevent representation drift. For a given
training sample x ∼ Ds, this constraint is simply formulated as:

L(x) = ‖φs−1(x)− φs(x)‖F (3.2)

• Finally, to tackle the issue of inter-task confusion, the authors introduce a margin
ranking loss to better separate reserved samples (saved in an exemplar memory)
from samples in the current task. This additional loss is thus unapplicable in a
memoryless scenario. Recent benchmarks [9] show that Lucir remains competitive
even when the margin ranking loss is removed to accomodate for the memoryless
scenario.

In [14], the authors build on this work by extending the less-forget constraint to be ap-
plied at shallower stages of a deep CNN, by pooling the convolutional outputs of the
current and past models.

SIW. In [8], the authors propose to replay the classifier weights first learned in past
tasks and to normalize them to tackle task-recency bias. This method is a simple baseline
but is nevertheless shown to be competitive against other state-of-the art methods on
large-scale datasets such as ImageNet [9].

Feature Adaptation. In [23], the authors propose to store features belonging to past
tasks and to train a feature adaptation network able to make past features (extracted
with φs−1) more compatible with the new representation φs. The adapted features from
past classes are then used conjointly with features from new classes to retrain the clas-
sifier layer. Again, this work is based on a modified version of LwF, in which a cosine
normalization is added before the softmax output layer.

Semantic Drift Compensation. In [57], the authors propose a class-incremental learn-
ing method operating without memory. They do not train with a classifier layer and
focus exclusively on learning good feature representations in each state. To that end,
new formulations of LwF and Lucir are given, and they propose to approximate and
correct the representation drift of past classes by measuring the drift of current task data.

Overall, as highlighted in Figure 3.1, memoryless class-incremental learning methods rely
on regularization and bias correction to compensate for the absence of rehearsal. It is also
worth noting that experimental results indicate that a large margin of improvement is still
possible [9] for this setting, as most methods greatly suffer from catastrophic forgetting
without access to past exemplars.





4
Method

Following the framework we proposed in Section 2, we introduce here our method which
operates without memory on top of any class-incremental learning method providing
output scores. In Section 4.1, we describe our first contribution: the introduction of a
correction layer which considers bias in each state independently. In Section 4.2, we pro-
pose a simple knowledge transfer scheme to apply calibration parameters in a memoryless
scenario.

4.1 Adaptive bias correction layer
Analysis. The unavailability of past class samples when updating incremental models
leads to a classification bias towards new classes [55, 59, 36]. We illustrate this in Figure
4.1 (left), by plotting the mean prediction scores in each state, for Lucir and LwF mod-
els trained on Cifar-100, the two distillation-based methods tested in this work. Models
are trained without memory to fit our problem setting, with S = 10 splits. Figure 4.1
confirms that recently learned classes are favored, despite the use of stability constraints
to counter the effects of catastrophic forgetting in both methods. New classes, learned
in the last state, are particularly favored. Noticeably, the prediction profiles for Lucir
and LwF are different. With Lucir, mean predictions per state increase from earlier
to latest states, while the tendency is less clear for LwF. LwF predictions also have a
stronger deviation in each state, while Lucir mean scores are very stable across states,
which makes Lucir a better candidate for bias correction.

BiC layer. Among the methods proposed to correct bias, the linear layer introduced
in [55] is interesting for its simplicity and its performance in a large number of settings [9,
36]. This layer is defined in the sth state as:

BiC(oks) =

{
oks if k ∈ J1, s− 1K
αso

k
s + βs · 1 if k = s

(4.1)

where oks ∈ R|Ns| are the raw scores (before softmax) of classes first seen in the kth state,
obtained with an incremental model Ms; (αs, βs) are the bias correction parameters in
the sth state, and 1 is a vector of ones. Equation (4.1) rectifies the raw predictions of new
classes learned in the sth state to make them more comparable to those of past classes.



(a) LwF [29]

(b) LUCIR [21]

Figure 4.1 – Mean prediction scores and associated standard deviations for Cifar-100
classes grouped by state at the end of an IL process with S = 10 states, for LwF and
Lucir, before (left) and after (right) calibration via our method.

The deep model is first updated using Ds, which contains new classes for this state. The
model is then frozen and calibration parameters (αs and βs) are optimized using a vali-
dation set made of a balanced mix of new and past classes samples.

adBiC . Equation (4.1) is not applicable in class-incremental learning without memory,
the scenario explored here, as optimizing the layer requires access to past class samples.
Furthermore, Figure 4.1 (left) shows that the mean scores of classes learned in different
incremental states greatly vary, which confirms that the amount of forgetting is uneven
across past states: ideally, the bias in the predictions of incrementally learned models
should thus be corrected with state-specific parameters.

Following these observations, we define an adaptive version of BiC which rectifies the
predictions oks in the sth state with:

adBiC(oks) = αk
so

k
s + βk

s · 1 ; ∀k ∈ J1, sK (4.2)

where αk
s , βk

s are applied in the sth state to classes first learned in the kth state. While
Equation (4.1) treats all past classes predictions equally, Equation (4.2) adjusts prediction
scores depending on the state in which classes were first encountered in the incremental
process. In Figure 4.2, we illustrate our proposition and its differences with BiC.

22



Figure 4.2 – Comparing our proposed linear bias correction layer to the one proposed
in [55]. Instead of only adjusting the prediction scores of the last state, we learn a pair
of coefficients for each state to better adjust the prediction profile. Furthermore, all
coefficients are jointly optimized in each state.

Note that each αk
s , βk

s pair is shared between all classes first learned in the same state.

These parameters are optimized on a validation set using the cross-entropy loss, defined
for one data point (x, y) as:

L(qs, y) = −
s∑

k=1

|Pk|∑
i=1

δy=ŷ log
(
qks,i
)

(4.3)

where y is the ground-truth label, ŷ is the predicted label, δ is the Kronecker delta, and
qs is the softmax output for the sample corrected via Equation (4.2), defined as:

qs = σ
([
adBiC(o1s) ; . .. ; adBiC(oss)

])
= σ

([
α1
so

1
s + β1

s · 1 ; . .. ; αs
so

s
s + βs

s · 1
]) (4.4)

where σ is the softmax function.

All αk
s , β

k
s pairs are then optimized using validation samples from classes in Ns. We

compare adBiC over BiC for our class-incremental learning setting in the evaluation
section, and show that the adaptation proposed here has a positive effect.



 
 

Figure 4.3 – Illustration of our proposed transfer method, depicting states from 1 to s for
reference and target datasets Dr and Dt. States from 1 to s− 1 are faded to convey the
fact that learned knowledge in these states is affected by forgetting, alongside reference
models Mr and target models Mt. The validation memory used for optimization of
adBiC parameters is represented on top of the reference training states, in grey. After
the transfer of correction parameters learned on reference datasets, the outputs of the
current target modelMt

s are rebalanced, and a corrected prediction ŷ is produced.

4.2 Knowledge transfer between datasets
Analysis. In the original setup proposed in [55], the optimization of α and β param-
eters is impossible without memory since exemplars of past classes are unavailable. To
circumvent this problem, we hypothesize that optimal values of these parameters can be
transferred across datasets, under the assumption that calibration profiles remain stable.
To illustrate this hypothesis, we provide in Figure 4.4 adBiC parameters values aver-
aged across R = 10 reference datasets1. We plot αk and βk values learned after S = 10
incremental states, using LwF [29] and Lucir [21], with standard deviations. The pa-
rameter ranges from Figure 4.4 confirm that, while optimal values do seem to vary across
datasets, this variation is rather low and calibration profiles remain similar. This opens
up the possibility of a parameter transfer between reference and target datasets.

Bias correction without memory. We propose to transfer learned bias correction pa-
rameters between reference and target datasets, noted Dr and Dt respectively. In Figure
4.3, we illustrate our approach. The upper part of the figure describes the incremental
training of reference models Mr on reference datasets Dr. In each state, a validation
memory is set aside. At the end of each state, adBiC parameters are optimized following
Algorithm 1 of Figure 4.6, to obtain the correction parameters for this state θrs .

After training a model Mr in each state, a set of adBiC parameters are optimized fol-
lowing Equation (4.3) using a validation set containing samples from all past classes.
We remark that the use of this validation set would violate the class-incremental setting
proposed in Section 2 if the evaluation was performed using the reference modelsMr, as
we revisit past classes samples in order to optimize parameters from Equation (4.2).

1For additional details about how these reference datasets are built, please refer to Section 5.1.3
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(a) LwF [29]

(b) LUCIR [21]

Figure 4.4 – Averaged αk (left) and βk (right) values computed for R = 10 reference
datasets using LwF and Lucir, at the end of an incremental process with S = 10 states.
Standard errors for each coefficient are shaded.

We then store bias correction parameters optimized for reference datasets in order to
perform transfer towards target datasets without using a memory. For each incremental
state, we compute the average of α and β values over all reference datasets. The obtained
averages are then used for score correction on target datasets, following the procedure
described in Algorithm 2 of Figure 4.6.

Backbone incremental models forMr are trained without memory in order to simulate
the incremental setting of target modelsMt. Note that we make no assumptions on the
source distributions of datasets Dr and Dt, but we empirically show later in Section 5.1
that similarity of these distributions impacts the transferability of correction parameters.

Memory costs. The memory needed to store transferred parameters is negligible since
we need S(S + 1)− 2 floats for each dataset and S value. For S = {5, 10, 20} states, we
thus only store 28, 108 and 418 floating-point values respectively. This is comparable to
the size of a single feature vector from a ResNet-18 model.



(a) LwF [29] (b) LUCIR [21]

Figure 4.5 – Learned αk curves on ImageNet-100 for LwF and Lucir across S = 10
incremental states. Each curve corresponds to the set of αk parameters learned after each
state, following the color code given above the graphics.

Parameter aggregation. When R > 1, a transfer function is needed to apply the
parameters learned on multiple reference datasets to a target dataset. We transfer pa-
rameters using the averaged αk

s and βk
s values, obtained for the set of Dr. In Section 5.1,

we evaluate our transfer scheme against an upper-bound oracle which selects the best Dr

in each state.

Dynamic bias correction. Another notable property of our bias correction method is
the fact that following Equation (4.3), all previously learned parameters are re-adjusted
in each state, instead of keeping them constant. In Figure 4.5 we highlight the advan-
tages of this property by plotting learned αk correction curves across successive states,
for Lucir and LwF trained on ImageNet-100. Optimal bias correction curves need to
be progressively adjusted, as bias towards past classes clearly increases across successive
states. Again, learned correction parameters seem more stable when learned on top of
Lucir, while parameters learned with LwF are less stable.

The proposed approach adds a simple but effective linear layer to calibrate the predictions
of backbone class-incremental learning methods. Consequently, it is applicable to any
incremental leaning method operating without memory and making use of a classifier
layer. In the following section, we test the genericity of the approach by applying it on
top of four existing incremental learning methods.
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Algorithm 1: Optimizing adBiC

1 input : A;Dr
s ∀s ∈ J1, SK

2 output : reference parameters {θr2, . ..,θrS}
3 Mr

1 ← train(A;Mr
1,Dr

1) ;
4 for s = 2...S do
5 Mr

s ← update(A;Mr
s−1,Dr

s) ;
6 αk

s ← 1, βk
s ← 0 for each k ∈ J1, sK ;

7 foreach (x, y) ∈ Validation(Dr, s)
8 do
9 os ←Mr

s(x) ;
10 for k = 1...s do
11 ok

s ← adBiC(oks) = αk
so

k
s + βk

s · 1 ;
12 end for
13 qs ← σ(os) ;
14 loss ← L(qs, y) ;
15 θrs = (α1

s, β
1
s , . .., αs

s, β
s
s)← optimize(loss) ;

16 end foreach
17 end for

Algorithm 2: adBiC inference
1 input : A; (αk

s , β
k
s ) ∀s ∈ J1, SK, k ∈ J1, sK; Dt

s for s ∈ J1, SK; {θr2, . ..,θrS}
2 output : predictions ŷ;
3 Mt

1 ← train(A;Mt
1,Dt

1);
4 for s = 2...S do
5 Mt

s ← update(A;Mt
s−1,Dt

s) ;
6 foreach (x, y) ∈ Test(Dt, s)
7 do
8 os ←Mt

s(x) ;
9 for k = 1...s do

10 ok
s ← adBiC(oks ;θrs) = αk

so
k
s + βk

s · 1 ;
11 end for
12 qs ← σ(os) ;
13 ŷ ← arg max y∈J1,NsK(qs,y) ;
14 end foreach
15 end for

Figure 4.6 – Algorithms for the transfer scheme proposed. adBiC parameters are learned
in each state for reference datasets in Algorithm 1, and then transferred at inference
for models trained on target datasets in Algorithm 2. Mr and Mt denote incremental
models trained on reference and target datasets respectively.





5
Results

We first describe in Section 5.1 our experimental setup, with details on metrics used,
implementation, datasets, and the backbone methods utilized. We then provide a detailed
evaluation of our method under various settings in Section 5.1. Finally, in Section 5.3, we
propose to evaluate our method under more challenging settings, and we further analyze
the effects of bias correction on output scores with our method.

5.1 Experimental setup

5.1.1 Evaluation

We describe here the metrics used to evaluate our strategy, the backbone methods se-
lected on top of which our method is applied, and the additional baselines considered.

Metrics. Various metrics applicable to the class-incremental learning scenario have been
proposed in previous works [45, 46]. In this work, we focus on the performance of models
on each task, which we measure using the average incremental accuracy. First proposed
in [45], this metric is the mean of the the accuracy values obtained for each incremental
state, and is defined as:

AS =
1

S − 1

S∑
s=2

(
1

s

s∑
k=1

as,k

)
(5.1)

where S is the total number of states, and as,k denotes the accuracy of the model learned
in state s on task k, defined as:

as,k =
1

|Dk|
∑

(x,y)∈Dk

1{y}

(
arg max

c∈Ns

(qs ∝ x)c

)
(5.2)

where 1 is the indicator function and qs ∝ x denotes the corrected softmax predic-
tion associated to sample x, following Equation (4.4). In each state, the model is thus
evaluated on the classes from the current task, alongside classes from all past classes.
Note that the performance on the first state s = 1 is discarded, as it is not incremental,
and does not bring any relevant information regarding the ability of the model to retain
performance on previous tasks. However, the performance on the first state will natu-
rally have an impact on the performance on the first task for models in subsequent states.



Backbone CIL methods. Our proposed method is applicable to a wide range of class-
incremental learning methods able to operate without a memory. In particular, we focus
here on backbone methods applicable to image classification and keeping computational
requirements constant during the incremental learning process. As an additional require-
ment, methods considered should be "architecture agnostic" and applicable to any vision
model.

Here, we apply adBiC on top of four backbone methods usable for class-incremental
learning compliant with these requirements (all previously described in Section 3.2):

• LwF [45] - multi-class formulation of the original method from [29] exploiting knowl-
edge distillation to reduce catastrophic forgetting for past classes, first proposed in
[45]. This reformulation is also dubbed as "Lwf-Mc" in the literature.

• Lucir [21] - distillation-based approach with additional constraints on class em-
beddings, and a cosine normalization of the output layer.

• Ft+ [36] - fine-tuning in which past classes weights are not updated to reduce catas-
trophic forgetting.

• Siw [8] - similar to Ft+, but with the addition of a standardization of class weights
in order to improve the comparability of predictions between past and new classes.

Baselines. Additionally to the results obtained when applying adBiC on top of the
previously mentioned methods, we also provide results obtained with the original BiC
layer. Following the procedure described in Section 4.2, BiC parameters are learned on
reference datasets and then transferred to models trained on target datasets during in-
ference. The BiC layer is implemented following [55] (see Equation (4.1)), and trained
using the same loss function.

We also provide results with an optimal version of adBiC , which is obtained via an
oracle-based selection of reference parameters. Instead of averaging parameters trained
on reference datasets, the best performing reference datasets for each incremental state
are selected. More formally, for each state s, the set θ∗s = (α1

s, β
1
s , . .., αs

s, β
s
s) of optimal

adBiC parameters to use is defined as:

θ∗s = arg max
r∈J1,RK

O
(
Mt

s, θ
r
s; s
)

(5.3)

Where:

• R is the total number of reference datasets.

• θrs is the set of adBiC parameters learned on reference dataset Dr for state s,
following Algorithm 1.

• Mt
s is the model incrementally trained on the target dataset in state s.
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And finally, O (M, θ; s) is an oracle function providing the accuracy of modelM on task
s, when corrected with adBiC parameters θ (following Algorithm 2). This oracle baseline
is important, as it indicates the potential supplementary gain obtainable with a param-
eter selection method more refined than the proposed one.

Finally, we provide results with a training from scratch with all data available at all times
(noted Joint in the following sections). This method is not incremental, and is an upper
bound for all incremental learning strategies.

5.1.2 Implementation details
In this section, we give implementation details of adBiC and the tested backbone meth-
ods. We provide hyperparameters used and learning strategies, alongside other technical
details.

Network architecture

The choice of the backbone network architecture used in incremental image classification
tasks varies in the literature. Methods like LwF or Lucir use ResNet [19] models with
either 18 or 32 layers, but some methods also use specialized architectures. Changing the
backbone network has been shown to influence the performance rankings of incremental
learning methods in [36]. In order to propose a unified evaluation of all methods, we use
a ResNet-18 backbone in all of our experiments.

Backbone methods

For Lucir [21] and Siw [8], we used the original codes provided by the authors. For LwF,
we adapted the multi-class TensorFlow [1] implementation from [45] to incremental learn-
ing without memory. For Ft+, we implemented the method by replacing classification
weights for each class group by their initial weights learned when classes were encountered
for the first time.

For LwF, we use a base learning rate of 1.0 divided by 5 after 20, 30, 40 and 50 epochs.
The weight decay is set to 10−5 and models are trained for 70 epochs in each state. For
Lucir, we mostly use the parameters recommended for Cifar-100 in the original paper
[21]. We set λbase to 5. For each state, we train models for 160 epochs. The base learning
rate is set to 0.1 and divided by 10 after 80 and 120 epochs. The weight decay is set to
5 ·10−4 and the momentum to 0.9. Note that since no memory of past classes is available,
the margin ranking loss is unusable and thus removed.

Siw and Ft+ are both trained with the same set of hyperparameters. Following [8],
models are trained from scratch for 300 epochs in the first non-incremental state, using
the SGD optimizer with momentum 0.9. The base learning rate is set to 0.1, and is
divided by 10 when the loss plateaus for 60 epochs. The weight decay is set to 5 · 10−4.
For incremental states, the same hyperparameters are used, except for the number of
epochs which is reduced to 70 and the lr is divided by 10 when the loss plateaus for 15
epochs. Finally, all methods use the same batch size value of 128.



Adaptive bias correction

Method. The correction of raw output scores is done in the same way for all meth-
ods. After the extraction of raw scores and corresponding labels for models learned in
each incremental state, batches are fed into a PyTorch [42] module which performs the
optimization of adBiC parameters, or the transfer of previously learned parameters de-
pending on the setting. Following [36], BiC and adBiC layers are implemented as pairs
of parameters and optimized simply through backpropagation.

Optimization. The parameters αk
s , β

k
s corresponding to each incremental state s are

optimized for 300 epochs, with the Adam [25] optimizer and a starting learning rate of
10−3.
An L2-penalty is added to the loss given in Equation (4.3), with a lambda of 5 · 10−3 for
α parameters and 5 · 10−2 for β parameters.

5.1.3 Datasets
In this section, we provide some technical details on the datasets selected for our experi-
ments, and the procedure use to construct them.

Reference datasets. The preliminary analysis from Figure 4.4 indicates that bias cor-
rection parameters are rather stable across different reference datasets. For our experi-
ments, we make use of multiple reference datasets in order to stabilize the averaged bias
correction parameters. Specifically, we use R = 10 reference datasets, each including 100
randomly chosen leaf classes from ImageNet [12] with a 500/200 train/validation split
per class. All constructed reference datasets have disjoint sets of classes.

Target datasets. We test our method with a total of five target datasets. They were
selected to include different types of visual content and thus test the robustness of the pa-
rameter transfer. Specifically, we try to select target datasets while varying the following
characteristics:

• domain-specificity 1

• granularity

• semantic level of classes

• proximity to ImageNet

The class samples from the target datasets are split into 500/100 train/test subsets re-
spectively. There is no intersection between classes from the reference datasets and the
two target datasets which are sampled from ImageNet (ImageNet-100 and Birds-100).

1As an example, methods like Lucir which strongly enforce stability of the learned feature repre-
sentations will perform better on datasets in which small domain shifts are expected from one task to
the next [36, 9].
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We briefly describe target datasets hereafter:

• Cifar-100 [27] - object recognition dataset. It focuses on commonsense classes and
is relevant for basic level classification in the sense of [47].

• ImageNet-100 - subset of ImageNet [12] which includes a hundred randomly se-
lected leaf classes. It is built with the same procedure used for reference datasets
and is thus most similar to them. ImageNet-100 is relevant for fine-grained clas-
sification with a diversity of classes.

• Birds-100 - dataset built using a hundred bird classes from the ImageNet [12]
dataset. It is thus relevant for domain-specific fine-grained classification.

• Food-100 - dataset built using a hundred food classes from the Food-101 [10]
dataset. It is also a fine-grained and domain-specific dataset, and is relevant as it
is independent from ImageNet.

Additionally, we perform experiments on the Places-100 dataset built from Places-365
[60], to further investigate the effects of a large domain shift from reference to target
datasets on our proposed parameter transfer scheme. We illustrate our dataset transfer
scheme in Figure 5.1 below.

Figure 5.1 – Proposed dataset transfer scheme to evaluate our method. We learn cal-
ibration parameters on reference datasets sampled from ImageNet, aggregate them by
averaging and transfer them to models learned on Food-100, Cifar-100, Places-100
and ImageNet-100.



5.2 Results and discussion

We provide here the main results of our method on the target datasets presented in
Section 5.1.3. In the following tables:

• Joint denotes the baseline with full training data available at all times described in
Section 5.1.1

• adBiC + O denotes the oracle baseline described in Section 5.1.1

Results are presented for each method without parameter transfer and with BiC and
adBiC transfer.
In Tables 5.1 and 5.2, we provide results for Cifar-100/ImageNet-100 and Birds-
100/Food-100. In Table 5.3, partial results on Places-100 are also provided. Finally,
in Figure 5.2, detailed accuracies for all methods are provided as a plot for S = 10 on
the Cifar-100, Food-100 and Birds-100 datasets, highlighting the gains obtained over
the backbone methods after correction. In the Appendix 7, figures for all settings and
datasets are also provided.

5.2.1 Main results

Accuracy tables

Method Cifar-100 ImageNet-100

S = 5 S = 10 S = 20 S = 5 S = 10 S = 20

LwF 53.0 44.0 29.1 53.8 41.1 29.2
w/ BiC 54.0 + 1.0 45.5 + 1.5 30.8 + 1.7 54.7 + 0.9 42.5 + 1.4 31.1 + 1.9
w/ adBiC 54.3 + 1.3 46.4 + 2.4 32.3 + 3.2 55.1 + 1.3 43.4 + 2.3 32.3 + 3.1
w/ adBiC + O 54.9 + 1.9 47.3 + 3.3 32.6 + 3.5 55.9 + 2.1 44.2 + 3.1 33.1 + 3.9

LUCIR 50.1 33.7 19.5 48.3 30.1 17.7
w/ BiC 52.5 + 2.4 37.1 + 3.4 22.4 + 2.9 54.9 + 6.6 36.8 + 6.7 21.8 + 4.1
w/ adBiC 54.8 + 4.7 42.2 + 8.5 28.4 + 8.9 59.0 + 10.7 46.1 + 16.0 27.3 + 9.6
w/ adBiC + O 55.5 + 5.4 43.6 + 9.9 31.2 + 11.7 59.4 + 11.1 46.6 + 16.5 29.7 + 12.0

SIW 29.9 22.7 14.8 32.6 23.3 15.1
w/ BiC 31.4 + 1.5 22.8 + 0.1 14.7 - 0.1 33.9 + 1.3 22.6 - 0.7 13.9 - 1.2
w/ adBiC 31.7 + 1.8 24.1 + 1.4 15.8 + 1.0 35.1 + 2.5 24.5 + 1.2 15.0 - 0.1
w/ adBiC + O 32.8 + 2.9 25.0 + 2.3 16.5 + 1.7 36.4 + 3.8 25.7 + 2.4 16.1 + 1.0

FT+ 28.9 22.6 14.5 31.7 23.2 14.6
w/ BiC 30.7 + 1.8 22.5 - 0.1 14.8 + 0.3 33.0 + 1.3 21.9 - 1.3 13.8 - 0.8
w/ adBiC 31.9 + 3.0 23.6 + 1.0 15.0 + 0.5 34.9 + 3.2 23.7 + 0.5 15.7 + 1.1
w/ adBiC + O 32.5 + 3.6 24.6 + 2.0 15.9 + 1.4 35.7 + 4.0 24.9 + 1.7 16.2 + 1.6

Joint 72.7 75.5

Table 5.1 – Average top-1 incremental accuracy on Cifar-100 and ImageNet-100 using
S = {5, 10, 20} states, for LwF, Lucir, Siw and Ft+. Gains and losses over the backbone
methods are in green/red respectively. Best results for each setting are indicated in bold.

34



Method Birds-100 Food-100

S = 5 S = 10 S = 20 S = 5 S = 10 S = 20

LwF 53.7 41.8 30.1 42.9 31.8 22.2
w/ BiC 54.6 + 0.9 43.1 + 1.3 31.8 + 1.7 43.4 + 0.5 32.6 + 0.8 23.8 + 1.6
w/ adBiC 55.0 + 1.3 44.0 + 2.2 32.8 + 2.7 43.5 + 0.6 33.3 + 1.5 24.7 + 2.5
w/ adBiC + O 55.8 + 2.1 44.8 + 3.0 33.3 + 3.2 44.0 + 1.1 34.2 + 2.4 25.3 + 3.1

LUCIR 50.8 31.4 17.9 44.2 26.4 15.5
w/ BiC 56.0 + 5.2 37.7 + 6.3 20.6 + 2.7 49.9 + 5.7 31.5 + 5.1 17.2 + 1.7
w/ adBiC 58.5 + 7.7 45.4 + 14.0 27.3 + 9.4 52.0 + 7.8 37.1 + 10.7 17.7 + 2.2
w/ adBiC + O 59.0 + 8.2 46.0 + 14.6 28.8 + 10.9 52.6 + 8.4 38.2 + 11.8 21.0 + 5.5

SIW 30.6 23.2 14.9 29.4 21.6 14.1
w/ BiC 32.8 + 2.2 22.7 - 0.5 12.8 - 2.1 29.1 - 0.3 20.3 - 1.3 12.1 - 2.0
w/ adBiC 33.0 + 2.4 25.2 + 2.0 15.3 + 0.4 30.9 + 1.5 21.3 - 0.3 14.5 + 0.4
w/ adBiC + O 34.4 + 3.8 26.2 + 3.0 16.3 + 1.4 31.5 + 2.1 22.6 + 1.0 15.1 + 1.0

FT+ 29.7 23.3 13.5 28.7 21.1 13.3
w/ BiC 32.3 + 2.6 22.5 - 0.8 12.4 - 1.1 28.6 - 0.1 20.6 - 0.5 11.8 - 1.5
w/ adBiC 34.0 + 4.3 25.0 + 1.7 14.2 + 0.7 30.8 + 2.1 22.2 + 1.1 14.2 + 0.9
w/ adBiC + O 34.5 + 4.8 25.7 + 2.4 15.4 + 1.9 31.3 + 2.6 22.7 + 1.6 14.5 + 1.2

Joint 80.9 71.03

Table 5.2 – Average top-1 incremental accuracy on Birds-100 and Food-100 using S =
{5, 10, 20} states, for LwF, Lucir, Siw and Ft+. Gains and losses over the backbone
methods are in green/red respectively. Best results for each setting are indicated in bold.

Method Places-100

S = 5 S = 10 S = 20

LwF 43.3 35.1 25.9
w/ BiC 43.9 + 0.6 36.1 + 1.0 27.6 + 1.7
w/ adBiC 44.2 + 0.9 36.6 + 1.5 28.6 + 2.7
w/ adBiC + O 44.6 + 1.3 37.5 + 2.4 29.3 + 3.4

LUCIR 40.5 26.0 16.0
w/ BiC 42.6 + 2.1 29.9 + 3.9 18.0 + 2.0
w/ adBiC 42.8 + 2.3 35.4 + 9.4 23.3 + 7.3
w/ adBiC + O 43.7 + 3.2 36.5 + 10.5 24.9 + 8.9

SIW 27.3 20.6 14.0
w/ BiC 26.7 - 0.6 20.6 + 0.0 12.0 - 2.0
w/ adBiC 28.8 + 1.5 21.2 + 0.6 13.1 - 0.9
w/ adBiC + O 29.0 + 1.7 22.1 + 1.5 14.1 + 0.1

FT+ 26.9 20.8 12.1
w/ BiC 25.9 - 1.0 19.8 - 1.0 10.9 - 1.2
w/ adBiC 27.3 + 0.4 19.7 - 1.1 13.2 + 1.1
w/ adBiC + O 28.4 + 1.5 21.2 + 0.4 14.0 + 1.9

Table 5.3 – Average top-1 incremental accuracy on Places-100 using S = {5, 10, 20}
states, for LwF, Lucir, Siw and Ft+. Gains and losses over the backbone methods are
in green/red respectively. Best results for each setting are indicated in bold.



Accuracy plots

Figure 5.2 – Average top-1 accuracies in each state on Cifar-100 (top), Food-100 (mid-
dle) and Birds-100 (bottom), with all backbone methods after adBiC correction, for
S = 10. Accuracies without correction of the corresponding methods are provided in
dotted lines (same colors). Plots for all datasets are also provided in the appendix.
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5.2.2 Discussion

General results. Overall, results show that our method improves the performance
of baseline methods for all but two of the configurations evaluated. The best overall
performance before bias correction is obtained with LwF. This result confirms the con-
clusions of [8, 36] regarding the strong performance of LwF in class IL without memory
for medium-scale datasets. With adBiC , Lucir performs generally better than LwF for
S = 5 and S = 10, while LwF remains stronger with S = 20 states.
Results are particularly strong for Lucir, a method for which adBiC brings consistent
gains in most configurations, with up to 16 accuracy points over the backbone accuracy.
Tables 5.1, 5.2 and 5.3 show that adBiC also improves the results of LwF in all configu-
rations, albeit to a lesser extent compared to Lucir.

Improvements for LwF are larger for S = 20 states, which is the most challenging con-
figuration since the model is more prone to forgetting. Ft+ [36] and Siw [8] remove the
distillation component for the class-incremental training process and exploit the weights
of past classes learned in their initial state.
adBiC improves results for these two methods in almost all configurations. However, their
global performance is significantly lower than that of LwF and Lucir, the two methods
which make use of distillation. This result confirms the finding from [8] regarding the
usefulness of the distillation term exploited by LwF and Lucir to stabilize IL training
for medium scale datasets.

Effectiveness of adBiC . Results from Tables 5.1 highlight the effectiveness of adBiC
compared to BiC . adBiC provides better gains in all tested configurations, with the most
important gain over BiC obtained for Lucir. It is also worth noting that adBiC im-
proves results for Siw and Ft+ in most configurations, while the corresponding results
of BiC are mixed. The comparison of adBiC and BiC validates our hypothesis that a
finer-grained modeling of forgetting for past states is a better way to perform calibration.

Oracle upper bound. We also compare adBiC , which uses averaged α and β parame-
ters, with an oracle selection of parameters (denoted as + O in Tables 5.1, 5.2 and 5.3).
The performance of adBiC is close to this upper bound for all tested methods, with a
difference of less than one accuracy point in the majority of settings. This indicates that
averaging is an effective way to aggregate parameters learned from reference datasets.
However, investigating more refined ways to select reference parameters for a given tar-
get dataset may further improve performance.

Datasets and shift. The comparison of target datasets shows that the gain brought
by adBiC is largest for ImageNet-100, followed by Birds-100, Cifar-100 and Food-
100. This is intuitive as ImageNet-100 has the closest distribution to that of reference
datasets. Birds-100 is extracted from ImageNet and, while topically different from ref-
erence datasets, was created using similar guidelines. The consistent improvements ob-
tained with Cifar-100 and Food-100, two datasets independent from ImageNet, shows
that the proposed transfer method is robust to data distribution changes. Similarly, re-
sults on Places-100 for LwF and Lucir are comparable to those obtained on other
target datasets, despite the domain shift from ImageNet.



Effects of the number of states. Except for LwF, adBiC gains are larger for
S = {5, 10} compared to S = 20. This result is consistent with past findings reported for
bias correction methods [36, 55]. It is mainly explained by the fact that the size of vali-
dation sets needed to optimize adBiC parameters is smaller and thus less representative
for larger values of S. A larger number of states leads to a higher degree of forgetting.
This makes the IL training process more challenging and also has a negative effect on the
usefulness of the bias correction layer.

Finally, the performance gaps between incrementally learned models and the Joint up-
per bound are still wide, particularly for larger values of S. This indicates that class-
incremental learning without memory still remains an open challenge.
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5.3 Further analysis

5.3.1 Robustness experiments

In this section, we complement the results presented in Section 5.2 with two experiments
which further evaluate the robustness of adBiC . In particular, we test the effectiveness
of our parameter transfer scheme in cases where reference and target models are trained
with different volumes of data, and we investigate the effects of the number of reference
datasets.

Dataset sizes. Results in Section 5.2.1 indicate that parameter transfer is generally
stronger with target datasets that are visually similar to reference datasets. Besides sim-
ilarity, we now investigate the effects of training the reference and target models with
different dataset scales. Intuitively, varying data sizes should affect the amplitude of bias,
and thus negatively impact the transferability of learned parameters from reference to
target models.

We verify this intuition by reproducing the experiments of Section 5.2, with half of the
training images for target datasets compared to reference datasets. Target datasets are
thus now trained with 250 training images per class, while reference datasets still keep
500 training images per class.
Results for these experiments are presented in Tables 5.4, 5.5 and 5.6. Overall, the trans-
fer of calibration parameters consistently brings gains in accuracy for LwF and Lucir.
Results are more mixed for Siw and Ft+, although gains are still observable.

These results show that our approach remains strong when reference and target datasets
differ in size, although this difference clearly impacts the transferability of calibration
parameters. Maintaining a low difference in dataset sizes is thus preferable in order to
keep the transfer effective.

Number of reference datasets. As described in the method we proposed in Section
4, we propose to aggregate parameters learned on multiple reference datasets simply by
averaging them. We propose here to asses the robustness of our method with respect to
R, the number of available reference datasets.

We modify this variable from R = 1 to R = 9. For each R value, we perform 10 random
samplings of the set of reference datasets to be used, and report obtained standard devia-
tions on the resulting accuracies. We provide results for Lucir on the Food-100 dataset,
which exhibits the largest domain shift from ImageNet out of the selected datasets, in
Table 5.7. Additional results for all methods on the Cifar-100 dataset are provided
Appendix 7.

Overall, most of the accuracy gains are obtained after a single dataset is used, although
using multiple reference datasets does help stabilizing results. This confirms that param-
eter transfer is effective with a small number of reference datasets.



Method Cifar-100 (halved) ImageNet-100 (halved)

S = 5 S = 10 S = 20 S = 5 S = 10 S = 20

LwF 41.3 33.3 23.3 45.6 33.5 23.8
w/ adBiC 42.1 + 0.8 34.8 + 1.5 25.0 + 1.7 46.7 + 1.1 35.3 + 1.8 25.6 + 1.8

LUCIR 43.5 27.8 16.6 42.9 27.6 17.0
w/ adBiC 48.3 + 4.8 38.5 + 10.7 25.3 + 8.7 54.1 + 11.2 42.4 + 14.8 23.2 + 6.2

SIW 31.7 21.6 13.7 32.1 22.7 14.4
w/ adBiC 33.7 + 2.0 22.5 + 0.9 14.0 + 0.3 35.0 + 2.9 22.6 - 0.1 12.2 - 2.2

FT+ 30.4 21.5 12.9 31.2 22.2 12.0
w/ adBiC 32.0 + 1.6 21.4 - 0.1 13.4 + 0.5 34.8 + 3.6 21.2 - 1.0 13.7 + 1.7

Table 5.4 – Average top-1 incremental accuracy on Cifar-100 and ImageNet-100 with
half of the training images compared to reference datasets, using S = {5, 10, 20} states,
for LwF, Lucir, Siw and Ft+. Gains and losses over the backbone methods are in
green/red respectively.

Method Birds-100 (halved) Food-100 (halved)

S = 5 S = 10 S = 20 S = 5 S = 10 S = 20

LwF 44.6 34.0 23.2 29.5 23.3 17.3
w/ adBiC 45.5 + 0.9 35.4 + 1.4 25.2 + 2.0 29.9 + 0.4 24.3 + 1.0 18.7 + 1.4

LUCIR 45.2 27.8 16.0 37.9 22.7 13.9
w/ adBiC 52.8 + 7.6 40.9 + 13.1 25.6 + 9.6 45.7 + 7.8 32.6 + 9.9 19.8 + 5.9

SIW 29.7 22.8 14.1 28.4 18.7 13.5
w/ adBiC 32.1 + 2.4 23.7 + 0.9 13.5 - 0.6 29.9 + 1.5 16.9 - 1.8 13.3 - 0.2

FT+ 29.2 22.8 12.2 27.4 18.2 11.6
w/ adBiC 31.9 + 2.7 23.0 + 0.2 13.6 + 1.4 28.8 + 1.4 16.2 - 2.0 12.2 + 0.6

Table 5.5 – Average top-1 incremental accuracy on Birds-100 and Food-100 with half
of the training images compared to reference datasets, using S = {5, 10, 20} states, for
LwF, Lucir, Siw and Ft+. Gains and losses over the backbone methods are in green/red
respectively.
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Method Places-100 (halved)

S = 5 S = 10 S = 20

LwF 35.4 27.7 21.5
w/ adBiC 35.9 + 0.5 28.5 + 0.8 23.6 + 2.1

LUCIR 35.5 23.2 14.7
w/ adBiC 40.5 + 5.0 33.6 + 10.4 22.3 + 7.6

SIW 27.2 19.6 14.8
w/ adBiC 28.5 + 1.3 19.3 - 0.3 14.3 - 0.5

FT+ 26.1 19.9 12.4
w/ adBiC 25.6 - 0.5 17.2 - 2.7 13.5 + 1.1

Table 5.6 – Average top-1 incremental accuracy on Places-100 with half of the training
images compared to reference datasets, using S = {5, 10, 20} states, for LwF and Lucir.
Gains and losses over the backbone methods are in green/red respectively.

S = 5 Raw R = 1 R = 2 R = 3 R = 4 R = 5 R = 6 R = 7 R = 8 R = 9 R = 10

44.19 51.9 ± 0.4 52.0 ± 0.2 52.1 ± 0.2 52.0 ± 0.1 52.1 ± 0.1 52.0 ± 0.1 52.0 ± 0.1 52.0 ± 0.1 52.0 ± 0.1 52.0

S = 10 Raw R = 1 R = 2 R = 3 R = 4 R = 5 R = 6 R = 7 R = 8 R = 9 R = 10

26.44 36.7 ± 0.7 36.9 ± 0.4 37.2 ± 0.4 37.2 ± 0.3 37.1 ± 0.2 37.0 ± 0.2 37.0 ± 0.1 37.1 ± 0.0 37.1 ± 0.1 37.1

S = 20 Raw R = 1 R = 2 R = 3 R = 4 R = 5 R = 6 R = 7 R = 8 R = 9 R = 10

15.47 17.6 ± 1.2 17.5 ± 0.7 17.6 ± 0.7 17.8 ± 0.4 17.5 ± 0.3 17.7 ± 0.4 17.8 ± 0.3 17.6 ± 0.2 17.7 ± 0.1 17.7

Table 5.7 – Average top-1 incremental accuracy of adBiC -corrected models trained incre-
mentally on Food-100 with Lucir, for S = {5, 10, 20} states, while varying the number
R of reference datasets. For R ≤ 9, results are averaged across 10 random samplings of
the reference datasets (hence the std values). Raw is the accuracy of Lucir without bias
correction.



5.3.2 Additional observations

In this section, we further investigate the effects of adaptive bias correction on output
scores, and provide empirical evidence to support its effectiveness. We also provide evi-
dence of the relationship between representation drift and maximum task performance.
Finally, we compare the maximum performance gains obtainable with a hypothetical bias
correction method able to remove all inter-task interference, to our method.

State-wise accuracies

By rescaling output scores for classes learned in specific states, our proposed bias correc-
tion method enables a fairer treatment of past classes. Here, we investigate the effects of
bias correction by parameter transfer on the accuracy of the models for recent and older
tasks.

In Figure 5.3, we illustrate the effects of adBiC on state-wise accuracies, for all backbone
IL methods evaluated in this work. Each row represents an incremental state and each
square the accuracy on a group of classes first learned in a specific state. In the first
state, represented by the first rows of the matrices, models are only evaluated on the first
class group. In the second state, represented by the second rows, models are evaluated
on the first two class groups, etc.

Before adaptive correction (left), all methods perform strongly on the last group of classes
learned (represented by the diagonals). Remarkably, Lucir maintains a stronger perfor-
mance on the first task learned (leftmost column) compared to the other methods. As
Lucir enforces the similarity of learned feature representations across states (see Equa-
tion (3.2)), this result is intuitive. Methods that have a higher plasticity like Siw and
Ft+ do not exhibit this characteristic.

Their performance is generally poorer for past classes (under the diagonals). Overall, the
rate of forgetting remains constant across class groups (except in the first class group
for Lucir). With LwF and Lucir, three to four incremental steps are sufficient for the
accuracy on a class group to drop below 20%. On Siw and Ft+, the rate of forgetting is
predictably faster.

After correction (right), all methods perform better on past class groups resulting in a
higher overall performance. Notably, the effects of bias correction varies greatly across
class groups. For the first class group learned with Lucir, bias correction is highly effec-
tive - which hints again towards the less-forget constraint favouring the first class group.
For Siw and Ft+, bias correction on the first class group does not favor the first class
groups. This result is expected, as these methods do not enforce stability of the feature
extractor.

Finally, and for all methods, the increase in the accuracy on past classes (under the
diagonals) is accompanied with a trade-off in the accuracy of models on the last class
group (diagonal), which is also an anticipated effect of bias correction.
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(a) LwF [29]

(b) Lucir [21]

(c) Siw [8]

(d) Ft+ [36]

Figure 5.3 – Accuracies per incremental state for each class group, for models trained with
all methods considered on Cifar-100 for S = 10 states, before (left) and after (right)
adBiC correction.



Representation drift and task performance

We are interested here in the drift of feature representations and its relationship with the
performance of incrementally learned model on specific tasks.

Evaluating drift. For a specific class c ∈ Pk, we propose to evaluate the average feature
drift from state k to state s as the drift of its centroid:∥∥∥∥∥∥

∑
x∈Ck,c

φs(x)−
∑

x∈Ck,c

φk(x)

∥∥∥∥∥∥
F

, k ≤ s (5.4)

where Ck,c denotes the set of samples from Dk belonging to class c:

Ck,c =
{
x | (x, y) ∈ Dk ; y = c

}
(5.5)

We then evaluate the average feature drift of task k to state s as:

ψk(s) =
∑
c∈Pk

1

|Pk| · |Ck,c|

∥∥∥∥∥∥
∑

x∈Ck,c

φs(x)−
∑

x∈Ck,c

φk(x)

∥∥∥∥∥∥
F

, k ≤ s (5.6)

Note that we do not cumulate the average drift between every pair of tasks, but only
consider the average feature vector drift between the state in which the task was first
learned and the current state.

Maximum task-wise accuracy. In order to estimate the effects of task representation
drift, we compare it to the maximum task-wise accuracy obtainable with a bias-corrected
incremental model. We define this metric for task k in state s as the accuracy of raw
predictions truncated to the first |Nk| outputs, that is:

as,k =
1

|Dk|
∑

(x,y)∈Dk

1{y}

(
arg max
c ∈Nk

(fs(x))c

)
(5.7)

with 1 the indicator function and fs the prediction function associated to the model
learned in state s as defined in Equation (2.1). Note that this task accuracy is a clear
upper bound of what is achievable in incremental learning, as interference with future
tasks is completely removed.

Results. In Figure 5.4, we plot the results for a model trained with Lucir across S = 20
states. We compare the normalized feature drift to the minimum task-wise error of the
first and tenth tasks. While the error on each task when newly learned is less than 10%
on both tasks, it rises to up to 60% error for the first task. Since we remove newer
classes activations from output vectors when evaluating maximum task performance,
predictions for the considered tasks are not affected by task-recency bias. For both tasks,
feature drift clearly negatively correlates with maximum performance for the two tasks
considered, which highlights its effect on task performance.
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Figure 5.4 – Normalized feature drift (full line, with standard deviation) and minimum
task-wise errors (dashed lines) for tasks 1 and 10 across S = 20 states, for an incremental
model trained with Lucir on ImageNet-100. The average feature drift for a given task
is clearly correlated with maximum task performance.

Figure 5.5 – Maximum task-wise accuracy (dashed lines: ), task-wise accuracy (dashed
lines: ) and task-wise accuracy after correction (full lines) for tasks 1 and 10 across
S = 20 states, with an incremental model trained with Lucir on ImageNet-100. While
bias correction via adBiC partially compensates for the interference in activations of more
recent classes, a wide margin of improvement is still possible.



Maximum task-wise accuracy and bias correction

We compare here the maximum task-wise accuracy as defined in Equation (5.7) to task-
wise accuracy (Equation (5.2)) and task-wise accuracy after bias correction via adBiC .
We plot the results for Lucir trained on ImageNet-100 across S = 20 states in Figure
5.5, for the first and tenth task. For the first task and in the first state, the three metrics
are equal since bias correction has no effect when a single task is learned, and there is
no interference with future classes. A large gap in accuracy exists between task-wise
accuracy with ( ) and without interference of future classes ( ). This gap is caused by
task-recency bias, but is also due to inter-task confusion as optimal bias correction (full
line) only partially bridges this gap.

These results indicate that while bias correction is an integral cause of catastrophic for-
getting in class-incremental learning, compensating for bias is not sufficient to maximally
recover task performance. These observations corroborate previous empirical studies such
as [49]. Furthermore, even if maximum task-wise performance is fully recovered after bias
correction, maximum task-wise accuracy still clearly highlights task forgetting as an effect
of representation drift, as previously highlighted in Figure 5.4.

Correction curve sensitivity

We investigate here if replacing learned bias correction curves by a simple model with
less parameters would yield similar (or better) accuracy. In Figure 5.6, we compare
accuracies obtained when replacing learned alpha parameters for S = 20 states by linear
and exponential curve fittings.

Figure 5.6 – Comparing accuracies obtained when replacing learned alpha parameters for
S = 20 states by linear and exponential curve fittings, for an incremental model learned
with Lucir on ImageNet-100. The original alpha curve (in black) yields an accuracy
five points higher than the best linear or exponential approximation, in state S = 20.

On average, using learned parameters yields an accuracy at least five percents higher
than the best exponential/linear alternative, which highlights the importance of learning
bias calibration parameters.
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6
Conclusion

In this work, we introduced a method enabling the use of bias correction methods for
class-incremental learning without memory, a challenging scenario highly subject to catas-
trophic forgetting. The proposed method transfers bias correction parameters learned
offline from reference datasets toward target datasets. Since reference dataset training is
done offline, a validation memory which includes exemplars from all incremental states
can be exploited to optimize the proposed correction layer. Our evaluation provides com-
prehensive empirical support for the transferability of bias correction parameters.

Performance of the state-of-the-art backbone methods employed is improved for almost
all configurations tested, with gains up to 16 top-1 accuracy points. Robustness evalu-
ation shows that parameter transfer is efficient when only a small number of reference
datasets is used for transfer. It is also usable when the number of training images per
class in target datasets is different from that of available reference datasets. These last
two findings are important in practice, since the same reference datasets can be exploited
in different incremental configurations.

A second contribution relates to the modeling of the degree of forgetting associated to
past states. While task-recency bias was already acknowledged [36], no difference was
made between past classes learned in different incremental states [55]. This is in part due
to validation memory constraints which appear when the bias correction layer is opti-
mized during the incremental process. Such constraints are reduced here since reference
datasets training is done offline and a refined definition of the bias correction layer with
specific parameters for each past state becomes possible. The comparison of the standard
and of the proposed definition of the bias correction layer is favorable to the latter.

The reported results encourage us to pursue the work presented here. First, parameter
transfer is done using average values of parameters learned on reference datasets: a finer-
grained transfer method could be devised to get closer to the oracle results reported
in Section 5.1. Furthermore, we propose here to transfer bias correction parameters
from source to target models. Our transfer scheme could be extended to better predict
representation drift [57] or to facilitate inter-task separation in a memoryless setting.





7
Appendix

In this appendix, we provide:

• Detailed accuracy plots for incremental models, before and after correction, for
S = {5, 10, 20} for:

– Cifar-100, in Figure 7.1

– ImageNet-100, in Figure 7.2

– Birds-100, in Figure 7.3

– Food-100, in Figure 7.4

• Additional results when varying the number of reference datasets, in Table 7.1.



Cifar-100

Figure 7.1 – Average top-1 accuracies in each state on Cifar-100 with all backbone
methods after adBiC correction, for S = 5 (top), S = 10 (middle) and S = 20 (bottom)
states. The accuracies without correction of the corresponding methods are provided in
dotted lines (same colors).
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ImageNet-100

Figure 7.2 – Average top-1 accuracies in each state on ImageNet-100 with all backbone
methods, for S = 5 (top), S = 10 (middle) and S = 20 (bottom) states. The accura-
cies without correction of the corresponding methods are provided in dotted lines (same
colors).



Birds-100

Figure 7.3 – Average top-1 accuracies in each state on Birds-100 with all backbone
methods, for S = 5 (top), S = 10 (middle) and S = 20 (bottom) states. The accura-
cies without correction of the corresponding methods are provided in dotted lines (same
colors).
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Food-100

Figure 7.4 – Average top-1 accuracies in each state on Food-100 with all backbone
methods, for S = 5 (top), S = 10 (middle) and S = 20 (bottom) states. The accura-
cies without correction of the corresponding methods are provided in dotted lines (same
colors).



S = 5 Raw R = 1 R = 2 R = 3 R = 4 R = 5 R = 6 R = 7 R = 8 R = 9 R = 10

53.0 54.3 ± 0.2 54.3 ± 0.2 54.3 ± 0.1 54.4 ± 0.1 54.3 ± 0.1 54.3 ± 0.1 54.3 ± 0.1 54.3 ± 0.1 54.3 ± 0.1 54.3

S = 10 Raw R = 1 R = 2 R = 3 R = 4 R = 5 R = 6 R = 7 R = 8 R = 9 R = 10

44.0 46.2 ± 0.3 46.4 ± 0.2 46.4 ± 0.2 46.4 ± 0.2 46.4 ± 0.1 46.4 ± 0.1 46.5 ± 0.1 46.4 ± 0.1 46.4 ± 0.1 46.4

S = 20 Raw R = 1 R = 2 R = 3 R = 4 R = 5 R = 6 R = 7 R = 8 R = 9 R = 10

29.1 31.8 ± 0.3 32.1 ± 0.1 32.1 ± 0.2 32.1 ± 0.1 32.2 ± 0.1 32.2 ± 0.1 32.3 ± 0.1 32.3 ± 0.1 32.3 ± 0.1 32.3

(a) LwF [29]

S = 5 Raw R = 1 R = 2 R = 3 R = 4 R = 5 R = 6 R = 7 R = 8 R = 9 R = 10

50.1 54.7 ± 0.4 54.8 ± 0.3 54.8 ± 0.1 54.8 ± 0.1 54.8 ± 0.1 54.8 ± 0.1 54.8 ± 0.1 54.8 ± 0.1 54.8 ± 0.1 54.8

S = 10 Raw R = 1 R = 2 R = 3 R = 4 R = 5 R = 6 R = 7 R = 8 R = 9 R = 10

33.7 42.0 ± 0.7 42.1 ± 0.3 42.2 ± 0.4 42.3 ± 0.3 42.2 ± 0.2 42.2 ± 0.2 42.2 ± 0.1 42.2 ± 0.1 42.2 ± 0.1 42.2

S = 20 Raw R = 1 R = 2 R = 3 R = 4 R = 5 R = 6 R = 7 R = 8 R = 9 R = 10

19.5 27.5 ± 1.4 27.8 ± 0.7 27.8 ± 0.9 28.3 ± 0.4 28.5 ± 0.5 28.6 ± 0.6 28.5 ± 0.4 28.4 ± 0.3 28.4 ± 0.2 28.4

(b) Lucir [21]

S = 5 Raw R = 1 R = 2 R = 3 R = 4 R = 5 R = 6 R = 7 R = 8 R = 9 R = 10

29.9 31.6 ± 0.2 31.6 ± 0.2 31.6 ± 0.1 31.7 ± 0.2 31.7 ± 0.1 31.7 ± 0.1 31.7 ± 0.1 31.7 ± 0.1 31.7 ± 0.1 31.7

S = 10 Raw R = 1 R = 2 R = 3 R = 4 R = 5 R = 6 R = 7 R = 8 R = 9 R = 10

22.7 23.8 ± 0.4 23.8 ± 0.2 23.9 ± 0.2 24.0 ± 0.2 23.9 ± 0.1 24.0 ± 0.1 24.1 ± 0.1 24.0 ± 0.1 24.1 ± 0.1 24.1

S = 20 Raw R = 1 R = 2 R = 3 R = 4 R = 5 R = 6 R = 7 R = 8 R = 9 R = 10

14.8 15.7 ± 0.3 15.7 ± 0.2 15.7 ± 0.2 15.8 ± 0.1 15.8 ± 0.2 15.8 ± 0.1 15.8 ± 0.1 15.8 ± 0.1 15.8 ± 0.1 15.8

(c) Siw [8]

S = 5 Raw R = 1 R = 2 R = 3 R = 4 R = 5 R = 6 R = 7 R = 8 R = 9 R = 10

28.9 31.9 ± 0.2 32.0 ± 0.1 32.0 ± 0.1 32.0 ± 0.1 32.0 ± 0.1 32.0 ± 0.1 31.9 ± 0.1 32.0 ± 0.1 32.0 ± 0.1 31.9

S = 10 Raw R = 1 R = 2 R = 3 R = 4 R = 5 R = 6 R = 7 R = 8 R = 9 R = 10

22.6 23.2 ± 0.4 23.5 ± 0.2 23.5 ± 0.2 23.6 ± 0.1 23.5 ± 0.2 23.6 ± 0.1 23.6 ± 0.1 23.6 ± 0.1 23.6 ± 0.1 23.6

S = 20 Raw R = 1 R = 2 R = 3 R = 4 R = 5 R = 6 R = 7 R = 8 R = 9 R = 10

14.5 14.8 ± 0.2 15.0 ± 0.1 15.0 ± 0.2 15.1 ± 0.1 15.0 ± 0.1 15.1 ± 0.1 15.1 ± 0.1 15.0 ± 0.1 15.0 ± 0.1 15.0

(d) Ft+ [36]

Table 7.1 – Average top-1 incremental accuracy of adBiC-corrected models trained incre-
mentally on Cifar-100 with LwF, Lucir, Siw and Ft+, for S = {5, 10, 20} states, while
varying the number R of reference datasets. For R ≤ 9, results are averaged across 10
random samplings of the reference datasets. Raw is the accuracy of each method without
bias correction.

54



Bibliography

[1] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado,
A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow, A. Harp, G. Irving, M. Is-
ard, Y. Jia, R. Jozefowicz, L. Kaiser, M. Kudlur, J. Levenberg, D. Mané, R. Monga,
S. Moore, D. Murray, C. Olah, M. Schuster, J. Shlens, B. Steiner, I. Sutskever,
K. Talwar, P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viégas, O. Vinyals, P. War-
den, M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng, “TensorFlow: Large-scale
machine learning on heterogeneous systems,” in OSDI, 2015. 31

[2] R. Aljundi, F. Babiloni, M. Elhoseiny, M. Rohrbach, and T. Tuytelaars, “Memory
aware synapses: Learning what (not) to forget,” in ECCV, 2018. 16

[3] R. Aljundi, L. Caccia, E. Belilovsky, M. Caccia, M. Lin, L. Charlin, and T. Tuyte-
laars, “Online continual learning with maximally interfered retrieval,” in NeurIPS,
2019. 3

[4] R. Aljundi, M. Lin, B. Goujaud, and Y. Bengio, “Gradient based sample selection
for online continual learning,” in NeurIPS, 2019. 3

[5] J. Bang, H. Kim, Y. Yoo, J.-W. Ha, and J. Choi, “Rainbow memory: Continual
learning with a memory of diverse samples,” in CVPR, 2021. 3, 17

[6] E. Belouadah and A. Popescu, “IL2M: Class incremental learning with dual memory,”
in ICCV, 2019. 1, 13, 15, 16

[7] ——, “ScaIL: Classifier weights scaling for class incremental learning,” in WACV,
2020. 15

[8] E. Belouadah, A. Popescu, and I. Kanellos, “Initial classifier weights replay for mem-
oryless class incremental learning,” in BMVC, 2020. 8, 19, 30, 31, 37, 43, 54

[9] ——, “A comprehensive study of class incremental learning algorithms for visual
tasks,” Neural Networks, 2021. 1, 4, 15, 17, 19, 21, 32

[10] L. Bossard, M. Guillaumin, and L. Van Gool, “Food-101 – mining discriminative
components with random forests,” in ECCV, 2014. 33

[11] F. M. Castro, M. J. Marín-Jiménez, N. Guil, C. Schmid, and K. Alahari, “End-to-end
incremental learning,” in ECCV, 2018. 1, 3, 10, 13, 15, 17, 18

[12] J. Deng, W. Dong, R. Socher, L. Li, K. Li, and F. Li, “ImageNet: A large-scale
hierarchical image database,” in CVPR, 2009. 32, 33

[13] P. Dhar, R. V. Singh, K. Peng, Z. Wu, and R. Chellappa, “Learning without memo-
rizing,” in CVPR, 2021. 7, 16, 18

[14] A. Douillard, M. Cord, C. Ollion, T. Robert, and E. Valle, “PODNet: Pooled outputs
distillation for small-tasks incremental learning,” in ECCV, 2020. 1, 3, 4, 12, 16, 17,
19



[15] A. Douillard, E. Valle, C. Ollion, T. Robert, and M. Cord, “Insights from the future
for continual learning,” in CVPR Continual Learning Workshop, 2020. 12

[16] R. M. French, “Catastrophic forgetting in connectionist networks,” Trends in Cogni-
tive Sciences, 1999. 8

[17] B. Fritzke, “A growing neural gas network learns topologies,” in NeurIPS, 1994. 15

[18] H. He and E. A. Garcia, “Learning from imbalanced data,” Transactions on Knowl-
edge and Data Engineering, 2009. 1

[19] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,”
in CVPR, 2016. 8, 10, 31

[20] G. E. Hinton, O. Vinyals, and J. Dean, “Distilling the knowledge in a neural network,”
in NeurIPS Deep Learning Workshop, 2014. 7, 16, 18

[21] S. Hou, X. Pan, C. C. Loy, Z. Wang, and D. Lin, “Learning a unified classifier
incrementally via rebalancing,” in CVPR, 2019. 1, 3, 7, 9, 10, 12, 15, 16, 17, 18, 22,
24, 25, 26, 30, 31, 43, 54

[22] W. Hu, Q. Qin, M. Wang, J. Ma, and B. Liu, “Continual learning by using informa-
tion of each class holistically,” in AAAI, 2021. 4

[23] A. Iscen, J. Zhang, S. Lazebnik, and C. Schmid, “Memory-efficient incremental learn-
ing through feature adaptation,” in ECCV, 2020. 10, 17, 19

[24] X. Jin, A. Sadhu, J. Du, and X. Ren, “Gradient based memory editing for task-free
continual learning,” in ICML Lifelong Learning Workshop, 2021. 3

[25] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” in ICLR,
2015. 32

[26] J. Kirkpatrick, R. Pascanu, N. C. Rabinowitz, J. Veness, G. Desjardins, A. A. Rusu,
K. Milan, J. Quan, T. Ramalho, A. Grabska-Barwinska, D. Hassabis, C. Clopath,
D. Kumaran, and R. Hadsell, “Overcoming catastrophic forgetting in neural net-
works,” Proceedings of the National Academy of Sciences, 2016. 16

[27] A. Krizhevsky, “Learning multiple layers of features from tiny images,” University of
Toronto, Tech. Rep., 2009. 33

[28] M. D. Lange, R. Aljundi, M. Masana, S. Parisot, X. Jia, A. Leonardis, G. G.
Slabaugh, and T. Tuytelaars, “Continual learning: A comparative study on how
to defy forgetting in classification tasks,” TPAMI, 2019. 15

[29] Z. Li and D. Hoiem, “Learning without forgetting,” in ECCV, 2016. 1, 3, 7, 10, 16,
18, 22, 24, 25, 26, 30, 43, 54

[30] X. Liu, C. Wu, M. Menta, L. Herranz, B. Raducanu, A. D. Bagdanov, S. Jui, and
J. van de Weijer, “Generative feature replay for class-incremental learning,” in CVPR
Continual Learning Workshop, 2020.

56



[31] Y. Liu, B. Schiele, and Q. Sun, “Adaptive aggregation networks for class-incremental
learning,” in CVPR, 2020.

[32] Y. Liu, Y. Su, A. Liu, B. Schiele, and Q. Sun, “Mnemonics training: Multi-class
incremental learning without forgetting,” in CVPR, 2020. 17

[33] A. Mallya and S. Lazebnik, “PackNet: Adding multiple tasks to a single network by
iterative pruning,” in CVPR, 2017. 6

[34] T. Martinetz, S. G. Berkovich, and K. Schulten, “Neural-gas network for vector
quantization and its application to time-series prediction,” Transactions on Neural
Networks and Learning Systems, 1993. 15

[35] M. Masana, T. Tuytelaars, and J. van de Weijer, “Ternary Feature Masks: continual
learning without any forgetting,” in CVPR Continual Learning Workshop, 2020. 6

[36] M. Masana, X. Liu, B. Twardowski, M. Menta, A. D. Bagdanov, and J. van de
Weijer, “Class-incremental learning: survey and performance evaluation on image
classification,” 2021, arXiv:2010.15277. 1, 2, 4, 8, 9, 13, 15, 21, 30, 31, 32, 37, 38,
43, 47, 54

[37] M. Mccloskey and N. J. Cohen, “Catastrophic interference in connectionist networks:
The sequential learning problem,” The Psychology of Learning and Motivation, 1989.
1, 8

[38] M. Mermillod, A. Bugaiska, and P. Bonin, “The stability-plasticity dilemma: inves-
tigating the continuum from catastrophic forgetting to age-limited learning effects,”
Frontiers in Psychology, 2013. 9

[39] M. Mundt, Y. W. Hong, I. Pliushch, and V. Ramesh, “A wholistic view of continual
learning with deep neural networks: Forgotten lessons and the bridge to active and
open world learning,” 2020, arXiv:2009.01797. 15, 17

[40] S. J. Pan and Q. Yang, “A survey on transfer learning,” Transactions on Knowledge
and Data Engineering, 2010. 6

[41] G. I. Parisi, R. Kemker, J. L. Part, C. Kanan, and S. Wermter, “Continual lifelong
learning with neural networks: A review,” Neural Networks, 2019. 15

[42] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin,
N. Gimelshein, L. Antiga, A. Desmaison, A. Kopf, E. Yang, Z. DeVito, M. Raison,
A. Tejani, S. Chilamkurthy, B. Steiner, L. Fang, J. Bai, and S. Chintala, “PyTorch:
An imperative style, high-performance deep learning library,” in NeurIPS, 2019. 32

[43] A. Prabhu, P. H. Torr, and P. K. Dokania, “GDumb: A simple approach that ques-
tions our progress in continual learning,” in ECCV, 2020.

[44] R. Ratcliff, “Connectionist models of recognition memory: Constraints imposed by
learning and forgetting functions.” Psychological Review, 1990. 8



[45] S. Rebuffi, A. Kolesnikov, G. Sperl, and C. H. Lampert, “iCaRL: Incremental clas-
sifier and representation learning,” in CVPR, 2017. 1, 4, 10, 15, 16, 17, 18, 29, 30,
31

[46] N. D. Rodríguez, V. Lomonaco, D. Filliat, and D. Maltoni, “Don’t forget, there is
more than forgetting: new metrics for continual learning,” in NeurIPS Continual
Learning Workshop, 2018. 29

[47] E. Rosch, “Principles of categorization,” Concepts: core readings, 1999. 33

[48] R. R. Selvaraju, A. Das, R. Vedantam, M. Cogswell, D. Parikh, and D. Batra,
“Grad-CAM: Why did you say that? visual explanations from deep networks via
gradient-based localization,” IJCV, 2016. 18

[49] A. Soutif-Cormerais, M. Masana, J. van de Weijer, and B. Twardowski, “On the
importance of cross-task features for class-incremental learning,” in ICML Theory
and Foundation of CL Workshop, 2021. 8, 10, 12, 15, 46

[50] N. A. Syed, H. Liu, and K. K. Sung, “Handling concept drifts in incremental learning
with support vector machines,” in SIGKDD, 1999. 15

[51] G. M. van de Ven and A. S. Tolias, “Three scenarios for continual learning,” in
NeurIPS CL Workshop, 2019. 3

[52] L. van der Maaten and G. Hinton, “Visualizing data using t-SNE,” JMLR, 2008. 10,
11

[53] E. Verwimp, M. D. Lange, and T. Tuytelaars, “Rehearsal revealed: The limits and
merits of revisiting samples in continual learning,” in ICCV, 2021. 17

[54] C. Wu, L. Herranz, X. Liu, Y. Wang, J. van de Weijer, and B. Raducanu, “Memory
Replay GANs: learning to generate images from new categories without forgetting,”
in NeurIPS, 2018.

[55] Y. Wu, Y. Chen, L. Wang, Y. Ye, Z. Liu, Y. Guo, and Y. Fu, “Large scale incremental
learning,” in CVPR, 2019. 1, 2, 13, 15, 16, 18, 21, 23, 24, 30, 38, 47

[56] Y. Xiang, Y. Fu, P. Ji, and H. Huang, “Incremental learning using conditional ad-
versarial networks,” in ICCV, 2019. 17

[57] L. Yu, B. Twardowski, X. Liu, L. Herranz, K. Wang, Y. Cheng, S. Jui, and J. van de
Weijer, “Semantic drift compensation for class-incremental learning,” in CVPR, 2020.
4, 10, 15, 16, 19, 47

[58] Y. Zhang and Q. Yang, “A survey on multi-task learning,” Transactions on Knowl-
edge and Data Engineering, 2017. 6

[59] B. Zhao, X. Xiao, G. Gan, B. Zhang, and S. Xia, “Maintaining discrimination and
fairness in class incremental learning,” in CVPR, 2020. 1, 16, 21

[60] B. Zhou, A. Lapedriza, A. Khosla, A. Oliva, and A. Torralba, “Places: A 10 million
image database for scene recognition,” TPAMI, 2017. 33

58


	Abstract
	Acknowledgements
	Introduction
	Background
	Problem setting
	Description
	Related scenarios

	Known challenges

	Related Works
	Main approaches
	Methods

	Method
	Adaptive bias correction layer
	Knowledge transfer between datasets

	Results
	Experimental setup
	Evaluation
	Implementation details
	Network architecture
	Backbone methods
	Adaptive bias correction

	Datasets

	Results and discussion
	Main results
	Accuracy tables
	Accuracy plots

	Discussion

	Further analysis
	Robustness experiments
	Additional observations
	State-wise accuracies
	Representation drift and task performance
	Maximum task-wise accuracy and bias correction
	Correction curve sensitivity



	Conclusion
	Appendix
	-4emBibliography

